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|. Background and Motivation



Background: Matching method for boundary-layer problems

 Traditionally, matched asymptotic expansion has been used
[H. P. Furth, J. Killeen and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).]
[B. Coppi, J. M. Greene, and J. L. Johnson, Nucl. Fusion 6, 101 (1966).]

 The matched asymptotic expansion has some difficulties:
— Reversed magnetic shear plasmas: Irregular singularity
e Failure in Frobenius series solution
— Plasmas marginally stable against ideal MHD: Remaining £ in outer region
e Less accurate approximation by inertialess, ideal MHD (Newcomb eq.) in

outer region
— Compatibility with numerical computations
e Errorin calculating matching data in outer region
e Errorin handling unbounded domain in inner layer
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* Some sophis
[A. Pletzer and R. L. Dewar, J. Plasma Phys. 45, 427 (1991).]
[R. L. Dewar and M. Persson, Phys. Fluids B 5, 4273 (1993).]
[A. Pletzer, A. Bondeson and R. L. Dewar, J. Comput. Phys. 115, 530 (1994).]

[S. Tokuda and T. Watanabe, Phys. Plasmas 6, 3012 (1999).]
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[S. Tokuda, Nucl. Fusion 41, 1037 (2001).]



Background: Matching via inner region with finite width

e We have developed a new matching method, which utilizes an inner
region with a finite width

— Firstly developed for m/n=1/1 ideal internal kink mode,
[Y. Kagei and S. Tokuda, Plasma Fusion Res. 3, 039 (2008).]

— and extended to resistive modes

< N A— <$ minor radius
i I\ I\
l%
Outer region: Inner region:
We solve the linearized MHD equations We solve the linearized MHD equations
without plasma inertia and resistivity including plasma inertia and resistivity

Conditions across the matching boundaries

(1) Continuity of perturbed magnetic field This was a non-tr!vial extension,
(2) Smooth disappearance of Ej as going away stemming fro-m d!fferenc.e qf
from the inner region to the outer region order of spatial differentiation

between outer and inner
regions due to resistivity



Significance of finite-width inner region

e Since the matching is NOT asymptotic,

— No need to rely on Frobenius series solutions around the singularity
e Applicable to irregular singularity cases

— Plasmas marginally stable against ideal MHD
* will be resolved in a few slides later

— Compatible with numerical computations (no need to take LIMIT numerically)
* We do not need to calculate matching data
 We do not need to handle unbounded domain

 Therefore, the new matching method using finite-width inner region
enables us to AVOID, not treat better, difficulties of the traditional
method



Example: m/n=2/1 (double tearing) mode

 Aspectratio A =10
e 800 grids are used in the whole domain

(typical g and £ profiles)

16 . 0.01
g —
14 ¢ B —
| 1 0.008
10 ¢ 1 0.006
N 8t <ol
5 1 0.004
4 B
1 0.002
2 B
0 0

0O 02 04 06 08 1

¥



Example: Eigenfunction of m/n=2/1 mode

Gmin — 2

Im ¢

=~

Almost complete overlap is observed
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Only FE) does not overlap since we solved
ideal MHD equation in the outer region



Example: Growth rate of m/n=2/1 (double tearing) mode

—6
— 1.2e-03 . . .
n=10 By=0, global ——
1.0e-03 § Bo= 0.5 Ar=0.2
| Bo= 10_;‘, global —e—
8.0e-04 | Bo= 107, Ar=0.2 = -
> 6.0e-04
4.0e-04
2.0e-04 |
0.0e+00 ' B ' '
1.97 108 199 2 2.01 2.02 2.03

9min

e Growth rate by the numerical matching technique agrees well with those
obtained by global calculation (w/o matching)

e For zero beta, m/n=2/1 double tearing mode is unstable for ¢min < 2

e For finite beta, the m/n=2/1 mode becomes unstable even if it is non-
resonant for ¢min > 2



Background: Correction of outer solution

Considerably finite £ remains in outer region in m/n=1/1 internal kink
mode

— This situation simulates marginally stable state against ideal MHD, which
includes high-beta toroidal plasmas
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n_:gﬂ’ - Non-zero F inthe ¢ <1 region

g
- indicates the relative importance of
inertia and resistivity there
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[M. Furukawa, S. Tokuda and L. —J. Zheng, Phys. Plasmas 17, 052502 (2010).]

We have developed an ORDERING SCHEME in the outer region for high-
beta RMHD, enabling us to obtain higher order corrections to the lowest-
order outer solution

— note that the lowest-order outer solution satisfies E|| =0



Significance of ordering scheme in outer region

e So far, traditional matched asymptotic expansion has used only the
lowest-order outer solution, i.e. inertialess, ideal MHD

e As we will see, the order-by-order equations in the outer region form a
hierarchy of generalized Newcomb equations, i.e.

N¢(0) =0 N is the well-known Newcomb operator
N¢(1) =2 (second-order ordinary differential operator)

Ny = S
%?(2) M Inhomogeneous source term includes effects of
_ : inertia and resistivity

— Applicable to plasmas marginally stable against ideal MHD

* Inertia and resistivity play relatively important role even in outer region
— We only need to solve second-order ODE for a scalar 9(;)

e Very fast computation with less resource

— Almost same module can be used in code d_e\_/elopm n

(o

— Our new theory has therefore established a powerful solution method
for boundary-layer problems

[M. Furukawa and S. Tokuda, Phys. Plasmas 18, 062502 (2011).]
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Structure of solution method

Divide the domain into OUTER and INNER regions

Solve lowest-order Newcomb eq.
in the outer region e Solve RMHD in the inner region
as a boundary-value problem
iteraV with a guess eigenvalue

e Seeking a true eigenvalue by imposing continuity of lowest-

order dp)/dr across the matching boundaries o,
Lowest-order solution _

N - S S S S S S S S S S B DS B BN BN B BN BN B BN BN B BN DS BN BN B BN BN B B BN B B B B e e e e e e e

First-order gives us a trivial solution, which can be included in the lowest- )

- e S S . e . .

_ Ordersolution First-order solution_ _ _)

———————————————————————————————————————————— ~
Solve second-order Newcomb eq. AN
in the outer region, which have * Solve RMHD in the inner region
inhomogeneous source terms as a boundary-value problem

with a guess correction for

iteratlio/ﬂ/’ eigenvalue
e Seeking a true correction for eigenvalue by imposing

continuity of second-order di))/dr across the matching
boundaries Second-order solution ..’

N e e o e e o e o e e o o e e e e e e e e e e M e mm e e e mmm mmm e Em M mm mmm M mm me mmm s -

[M. Furukawa and S. Tokuda, Phys. Plasmas 18, 062502 (2011).]

11



Example: Eigenfunction of m/n=1/1 internal kink mode

 Aspectratio A =10
e 800 grids in total
e m/n=1/1 surfaceat r = 0.5

n=10"%  Ar=02

e Equilibrium current density: E ool eroth (glljctnésl —
' B 2 = 0.2 . -
M) = Joll=r) - o fonerd - -
-0.3 - | | ~second (inner) —e-
, |
(b)
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o
r
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-0.0002

* Thefinite Fj in the outer region is successfully captured
[M. Furukawa and S. Tokuda, Phys. Plasmas 18, 062502 (2011).] 12



Example: Growth rate of m/n=1/1 internal kink mode

e Aspect ratio A = 10 e m/n=1/1 surfaceat r = 0.5
* 800 grids in total e Equilibrium current density:
Jo(r) = Jro(1=72)
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 The accuracy of the growth rate improves by the correction of the outer
solution

[M. Furukawa and S. Tokuda, Phys. Plasmas 18, 062502 (2011).] 13



Motivation: Extension to include FLR effects

e |f weinclude FLR (Finite Larmor Radius) effects, or diamagnetic drift
effects, mode can have finite real frequency, which makes

— inertia important even in outer region
* The higher-order correction to outer solution would be indispensable
— Alfvén resonances split from rational surface

* The finite-width inner region would be indispensable, because how far is
the Alfven resonance from the rational surface would not be known prior
to solving the problem; we do not know where we should put the inner
layer in the conventional matched asymptotic expansion

split by rotation etc.
r

I | I
i *x %

.~ rational surface
Alfvén resonances

B
-

e In this presentation, | would like to focus on the development of the
ordering scheme to solve the governing equations in the outer region
order by order
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Il. Ordering scheme in outer region including FLR effects
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Review: High-beta reduced MHD

Linearizing the high-beta reduced MHD equations, we obtain

—

.
WV = i FV2y - 0

.
1 —iwp = —iFp+nV3iy

. i mpy,
—lwp =
- T

¥

)+

1 MK

p
r

[H. R. Strauss, Phys. Fluids 20, 1354 (1977).]

(k-t:=k=—B%/r
F(r) :=me (ﬁ + 1)

m g

\ k:=mV0— (n/Ry)Vz

where time dependence is assumed to be e™'%!

Introducing a small parameter € < 1, we found the following ordering

scheme is appropriate:
n~ O()
W = €w(1) + 62(,0(2) + -
p = €pay + P + -
=Py + €ePay + -

(o)

-~

€ is not aninverse aspect ratio ]

( Distinguish from equilibrium
_ quantities with subscript ,

These are similar to the ordering in the inner

layer in the matched asymptotic expansion,
P =P +€pa) + - except for this

[M. Furukawa and S. Tokuda, Phys. Plasmas 18, 062502 (2011).] 16



Review: High-beta reduced MHD (cont’d)

Lowest order: 0 ry, _Ts_ | _TR 1
& ; "
o ./\/-779(0 =0 T
Yy = —W(O
2 0 J’ — en
N = V +TF( +7*Fﬁ'jp0) { B mpy
Po) = — V(o
. . 1
First order: V) = F ( (l)d) 1) + W(2) ",b(()))
& Ntoy=0 mp)
PO =~ % Yy

Second order:

w(1) 17 (m\2 ,_,

o Nip) = 2VE (v + — () b Vive

@= F o) o, GE) hvate
the plasma inertia and re;istivity come in this order
as inhomogeneous terms

- 1

pe) = 7 (Wyde) T we o) +wete) —11Vide)
] o |
Py = ——= (Yo —1nVido)

[M. Furukawa and S. Tokuda, Phys. Plasmas 18, 062502 (2011).]
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Linearized Four-field model

Vorticity equation [R. D. Hazeltine, M. Kotschenreuther, and P. J. Morrison, Phys. Fluids 28, 2466 (1985).]

im_ T [, " a 1 Be is explicitly written
—iwVip=— . c%’eT [povzl + (po - &) (_ - _)] ' [ y i

or r for clarity
) T;
—iF(Vi+m;°)¢+lm (1+T) K Bep
Parallel Ohm’s law g " ¢ parallel wave number
' n 1
im A Lz
—lwy = —1Fp+ (75ﬁep6 + nvi) )+ 631 Fp F=lky=em (m + q)
Pressure equation (continuity equation) paramet?r of FLR
1 im ! . 9 mJ6 (5 =
—1wfep = T(ﬁep0_26&)90—25)81}7 VJ__l_ T Y 2Q07A
eB
im ]_ T; 9 . Q = 0
+ |40k + S |1+ | nVi| BBep — PiFv mi
r 2 Te b
eta
Parallel equation of motion B = Be
1 T\ 1 1 T 1+2(14+5
Wy = —— 1_|__1 ﬂﬁep;ﬂb__ 1_|__1 lFﬁep 2 ( Te)
’ L 2 Te 20T,
6 L HoTlLe
1; 1; e i= 5
lméﬁ [ ( Tl) Bepy — 41’1}] v By

We would like to extend the ordering scheme suitable for this four-field model
18



Some considerations for natural extension of ordering (1)

[R. D. Hazeltine, M. Kotschenreuther, and P. J. Morrison, Phys. Fluids 28, 2466 (1985).]

Vorticity equation

im__ T, [, . D d TV
—iwVip = ——08c7 |poV1+ | Ph - i (_ - —) P
r T, or __r |- N

. 1 These terms should be
~iF (VI +— 1+ — | 65
: ( + rF i ) P smaller than (at least)
Parallel Ohm’s law . this term in order to
. . 1m ' 2 : obtain the well-known
1wy = —1Fp+ 0Pepy + MV |+ 081 Fp OV
r Newcomb equation in
Pressure equation (continuity equation) the lowest order
, im , , 5 M|
—1wBep = T(ﬁep0—26ﬁ:)cp—2561F Vi + e Y

1m 1 T: 9 ,
+ [7451~£+ 2 (1 + E) nVL] BBep — BiFv

Parallel equation of motion

—jwy = —% (1 %) —ﬁepod) ( ) 1 ' Bep

g1 )]
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Some considerations for natural extension of ordering (2)

Vorticity equation [R. D. Hazeltine, M. Kotschenreuther, and P. J. Morrison, Phys. Fluids 28, 2466 (1985).]

" o 1
R R e (a-4) (2 1)

Y AR
1F(V + TF)?,D-I- . (I—I—Te)rfﬁep

These terms should be
smaller than these

. im ‘ m.J! terms in order to obtain
—lwfep = T (Bepo — 28K) ¢ — 261 F (VQL + . O) ¥ ideal Ohm'’s law in the

lowest order

Pressure equation (continuity equation

1m 1 T; 9 :
+ [7451~£+ 2 (1 + E) nVL] BBep — BiFv

Parallel equation of motion

—jwy = —% (1 %) —ﬁepod) ( ) 1 ' Bep

g1 )]
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Some considerations for natural extension of ordering (3)

Vorticity equation [R. D. Hazeltine, M. Kotschenreuther, and P. J. Morrison, Phys. Fluids 28, 2466 (1985).]

S e (6= 0) (53]

Parallel Ohm’s law
: : 1m ,

—iwy = —iFp+ 7(56@])0 +

Pressure equation (continuity equation)

. 1m .
—1wBep = — (Bepy — 2BK) o — 2081 F (Vi +

1m 1 T; 9 :
+ [7451~£+ 2 (1 + E) nVL] BBep — BiFv

Parallel equation of motion — This termshould be the

same order as this term,

N Iiim 1 T\ . : :
-5 (1 + i) —5e190¢ -3 (1 i i) i F'Bep WhI.Ch was assume.d in

deriving the four-field

1; 1;
ﬂéﬁ [ ( T) Bepy — 414:] v model

21



Some considerations for natural extension of ordering (4)

Vorticity equation [R. D. Hazeltine, M. Kotschenreuther, and P. J. Morrison, Phys. Fluids 28, 2466 (1985).]

diamagnetic drift

Parallel Ohm’s law frequency, which should

@ Pt @ nv’i) . be smaller than, or at
most the same order as,
Pressure equation (contlnwty equation) the mode frequency
, im , mJ)
—1whep = — (Bepy — 2BK) o — 2081 F (Vi -+ TFO) Y

1m 1 T; 9 :
+ !745;«.; +5 (1 - i) an_] BBep — P1Fv

Parallel equation of motion

—jwy = —% (1 %) —ﬁepod) ( ) 1 ' Bep

g1 )]

22



Natural extension of ordering in the outer region

e By using a small parameter € < 1 , let us introduce the following

ordering in the outer region:

n~ O(e)

W = €w(y) + 620.)(2) T+
0 =€) + € P + -
Y=o+ e+
P =D T €Pa)+ -

0
o~ O(1)

[ € is not aninverse aspect ratio ]

These have been adopted in
Furukawa & Tokuda, PoP (2011)

and, for the new variable and the parameter,

v = €V(1) + 62’0(2) + -

0 = Ole)

This makes parallel and perpendicular inertia
same order

By choosing /3, well smaller than unity, this
makes the diamagnetic drift frequency smaller
than the mode frequency

23



Problem stemming from sound wave

The four-field model includes sound wave, which can be extracted by
picking up corresponding terms as

—1wlep = —P1Fv ordering —1w)fepo) = —PiFv)
| | T ——> | T\
—10.)2)2—5 1—I—T 1 F'Bep _lw(l)v(l):_§ 1‘|‘T lFﬁep(z)
e e
ivin
glving 2w?
_ (1)
P(2) 8 (1 N ) sz(o) | have used a relation
similarly obtained by
o Zw(l)mp{, the ordering
3 (1 + %) rFs ©) c.f. vorticity eq.
e . oa im 5 Py o 1\|
—lwVip = _—5»59 l:vaJ_ + (P - 7_) (5 - ?)] 4
/8e¢(0 _1F(V2 ?F]U) gj+¥(l+%) KBep

The second-order vorticity equation, which leads to the Newcomb
equation with inhomogeneous source terms, includes a term proportional

to /8ep(2)
This term should vanish when 5, — 0 , however, it remains finite
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How to resolve this problem?

Item 1: Retaining the sound wave somehow

By considering typical frequencies in the four-field model, we would develop an
ordering scheme, including ordering for /3,

| would explain the idea below, however, this is still on going

Item 2: Decoupling the sound wave

The r.h.s. of the pressure equation in the four-field model originates from
compressibility —pV -v |

As described in Hazeltine PoF(85), the compressibility is actually a higher-order
term in the inverse aspect ratio expansion, however, is retained by physical
importance

Therefore, we would just neglect the compressibility in the pressure equation,
according to the consistent ordering by the inverse aspect ratio

| have established an ordering scheme in the outer region including
FLR effects

25



Item 1: Retaining sound wave

 Typical frequencies in the four-field model:
— Alfvén frequency wa = F ~ 1

: . _m -

diamagnetic drift frequency w,, = . 8 Bepy ~ 0% among these three

3 T would be important
— sound wave frequency ws = tFy/— (1 + —1) ~ v/ e in the outer region

magnitude relation

2 T,

—

1
— typical frequency in tflme inner layer i (F")23p4/3
m]; _ resistive diffusion — = —- ot

TR TA

W5

Y () N

.__frequency o =

of phenomenon v ~1/8%»1 Pe
0 o Depending on the [ value, the
Pe magnitude relation changes
W ~ Wye K Wyg .
Wxe < O ~ Mg Therefore we need an ordering also for [,

0 <= Wye 0y . . .
W < Wye < O Dye € O < Wy This is on going
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Item 2: Decoupling sound wave

e Bydroppingthe —pV - v term, the linearized four-field model becomes

Vorticity equation
_ im . T1; Dy 0o 1
vt -maa a6 5) (31

r T

ip (MR i (LT
1F(Vl+ rF)w_l_ . (1+Te)ﬁ:ﬁep

Parallel Ohm’s law _
_iw) = —iFo+ (%5@% + nvi) W + 681 Fp

Pressure equation (continuity equation: just convection)

. 11
—iwfep = Tﬁep{)so

* In the following, the ordering scheme mentioned above is applied



Lowest order

Writing the governing equations as
—1wVip = €Cop(p) + Cop(¥) + Cppp
1 —lwy = Cypp + (ECwW + 6301&77 (Qp)) + €Cypp

| —lwMpp = Cpup

the lowest-order equations are
0 = Cyy(¥(0)) + CopPio)

7 —lwm o) = Cuepa) + Cuyptbo) + Cyppio) }
_ —iw(l)MpP(O) — prﬁo(l)

wi(1) These give us
Y1) — 71&(0)

mpj
PO =~ % Yo

The vorticity equation leads to the lowest-order Newcomb equation as

m [, m , 1
N’w(ﬂ) — 0 NI: vi—i_?“_F [JO—FT—FKJBepO (1+i)]
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First order

0= Cw/)(w(l)) + Cupp(1)
—iwe)Ye) —1wnmPa) = CyePe) + Cypiba) + Cyppa)

A

—1we) Mppy — 1wy Mypay = Cppp(2)

gives us

1
P = 7 (Wore +weto)

mpy
P =~ % Y1)

and the first-order Newcomb equation as

Nw(l) —0 [ with the same operator N/ ]

as the lowest order

29



Second order

Similarly, we obtain

1
pe) = 7 (e +wetn) +we o)
1 W(1) 9
+ - vV
i F wa + Z0Buph | LY0)
mpE) 1 2
S - v
p(Q) T‘F (1/)(2) w(l) 4 %55&9677 J_w(o))
and the secongl-_o[d_eg Newcomb equationas _ _ ____________
1 m.. T o2 (@) K
Ny =i 7 (w(l) - 5/8ep0i) Vi (?%0(0)) |
|
! m 1; il 0 1 W(1) !
ok () (3 2) ()

i F ﬁeTe ( | fr) (87‘ T) F 0 :
. :
I |

N e e o e o E e EE o o EE O EE O O EE O EE O EE O EE EE e EE e E e o

inhomogeneous source terms, which with the same operator \/
make the second-order correction to as the lowest order

the outer solution .



I1l. Numerical results
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m/n=2/1 tearing mode with FLR effects

Aspect ratio A = 10
200 grids are used in the whole domain

3.5 . . . . 5e-04 (3, =5 x 107"
3| 1
1 4e-04 — =1
25 | Te
)| { 36-04
~ Q
D r 1 2e-04
‘I -
{ 1e-04
0.5 | .
— Ber
0 ' 0e+00

0 0.2 0.4 0.6 0.8 1

Eigenvaluefor § =0.1, n=10"°
— w/o matching (global) w=1.8272 x 107° + 2.8913 x 1074
— w/ matching( Ar =0.2 ) w=1.5483 x 10~ + 2.8862 x 10~4
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m/n=2/1 tearing mode with FLR effects (eigenfunction 1)

0.05 . . . . 0.1

| : —
0 n 0.1k
'. 0.2t
, 005} h | . 03l |
= !
: 0.1 | | '-\\ f
' al 05 | g\\ _i- ]
;t lobal — . global —
-0.15 Q zeroth (%uter) — 0.6 1 :'\ zeroth (outer) — 1
' h (i S 1 zeroth (inner) —
zeroth (innen) 0.7 1 | second (outer) — 7
second (outer) —— ! second (inner
-O 2 . . SleCOnd (Inl’]er) _08 1 1 1 |e )
0 0.2 0.4 0.6 0.8 i 0 0.2 0.4 0.6 0.8 1

T T 0.1 T T T
global — W global —
zeroth (outer) — 0.08 zeroth (outer) — -
zeroth (inner zeroth (inner
(
(

) — ) —
second (outer) — 0.06 second (outer) — A
second (inner) second (inner)

0.04
0.02

Re vy
Im yr

-0.02
-0.04 ¢

\ \ -0.06
' ' -0.08

0.6 0.8 1 0 0.2 0.4 0.6 0.8 1




m/n=2/1 tearing mode with FLR effects (eigenfunction 2)

Re p

Re E,

2+ \‘. 4
.:\
a3t | |
4 r global — 1
L zeroth (outer) —
5t J zeroth (innery — |
second (outer) —
6 . . _second (inner)
0 0.2 0.4 0.6 0.8
F
0.0005 :
global —
0.0004 zeroth (outer) — -
0.0003 zeroth (inner) — |
' second (outer) —
0.0002 second (inner) 1
0.0001 -
0 i
-0.0001 { -
-0.0002 ! .
-0.0003 | ]
-0.0004 f ]
-0.0005 ¢ ]
-0.0006 ' ' . .
0.2 0.4 0.6 0.8 1

1.2

1k
0.8
0.6
0.4
0.2

0

T T T

Im p

-0.2
-0.4
-0.6
-0.8

T

global —
zeroth (outer) — 1
zeroth (inner) —
second (outer) —
second (inner)

0.0003

0.0002

0.0001

Im E},

-0.0001

-0.0002

-0.0003

0.2

0.4

0.6 0.8 1

global —
ocuter) —
inner) —
outer) —
inner)

zeroth
zeroth
second
sgcond

o s =,

0.6 0.8 1
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Conclusions

We have extended an ordering scheme in outer region to include FLR
effects

— In this case the compressibility was neglected according to the consistent
inverse aspect ratio ordering

We have obtained some numerical results, which seem to show success of
the extended ordering scheme

We have also found a direction how to include compressibility in the
ordering scheme

— We need to specify an ordering for [. , since the magnitude relation among
typical frequencies in the four-field model changes depending on [,
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