Recent progress of toroidal full-f gyrokinetic simulation based on GKNET

Contents

1. Introduction
 • Toroidal full-f gyrokinetic code GKNET
 • Recent progress based on GKNET
2. Flux-driven turbulent transport and ITB formation
 • Flux-driven turbulent transport coupled with mean flow
 • ITB formation in flux-driven ITG turbulence
3. Summary & Future Plans

K. Imadera, K. Obrejan, W. Wang, H. Liu
R. Yoshida, S. Maeda, J. Q. Li and Y. Kishimoto

Graduate School of Energy Science, Kyoto University
Local/Global Gyrokinetics

Local approach

\[\partial_t f_{eq} - [H, f_{eq}] = C(f_{eq}) + S \]

\[\partial_t \delta f - [H, \delta f] - [\delta H, f_{eq}] - [\delta H, \delta f] = C(\delta f) \]

- Linear
- Driving
- Nonlinear

Global approach

\[\partial_t f_{eq} - [H, f_{eq}] = C(f_{eq}) + S \]

- Self-consistently determined Mean E_r

\[\partial_t \delta f - [H, \delta f] - [\delta H, f_{eq}] - [\delta H, \delta f] = C(\delta f) \]

- Linear
- Driving
- Nonlinear

Fixed Gradient

\[\frac{R}{L_T} \neq 0 \]

\[T = \text{const} \]

- Heat/particle sink
- Heat source

Global profile shear effect can be taken into account (e.g. ω_r shear)

- Very powerful tool to estimate turbulent transport process

- Computationally efficient
 - -> multi-species, EM turbulence

Fixed Flux

\[\frac{R}{L_T} \neq 0 \]

\[T \neq \text{const} \]

- Mean E_r is self-consistently determined
 - -> ITBs, L-H transition...

GKV(JPN), GS2(US), GENE(GER), ...

GT5D, GKNET(JPN), XGC(US), GYSELA(FRA), ...
GK Vlasov equation for ion

\[\frac{\partial f}{\partial t} + \frac{dR}{dt} \cdot \frac{\partial f}{\partial R} + \frac{dv_\parallel}{dt} \frac{\partial f}{\partial v_\parallel} = C_{coll} \]

\[\frac{dR}{dt} \equiv \{R, H\} = v_\parallel b + \frac{c}{eB^*_\parallel} b \times (e\nabla\langle\phi\rangle_\alpha + m_i v^*_\parallel b \cdot \nabla b + \mu \nabla B) \]

\[\frac{dv_\parallel}{dt} \equiv \{v_\parallel, H\} = -\frac{B^*_\parallel}{m_i B^*_\parallel} \cdot (e\nabla\langle\phi\rangle_\alpha + \mu \nabla B) \]

Vlasov solver
✓ 4th-order Morinishi scheme + 4th-order RK-Gill scheme

GK quasi-neutrality condition

\[\phi - \langle\phi\rangle_\alpha + \frac{1}{T_{e0}(r)} (\phi - \langle\phi\rangle_\alpha) = \frac{1}{n_{i0}(r)} \int \int \langle\delta f\rangle_\alpha B^*_\parallel dv_\parallel d\mu \]

Real space field solver
✓ Full-order FLR effect (without Tayler/Pade approximation)
✓ Field equation is solved in real space (not k-space)

Recent Progress Based on GKNET

Study of flux-driven ITG turbulence

(A-1) Flux-driven turbulent transport couple with mean flow
 [Y. Kishimoto, et al., submitted to IAEA-2016]
 [W. Wang, et al., this workshop]
 - Global profile shear effect of ω_r and ω_f on ballooning structure
 - Intermittent turbulent transport coupled with radially extended ballooning structure

(A-2) ITB formation in flux-driven turbulence
 [K. Imadera, et al., submitted to ICPP-2016 & IAEA-2016]
 [S. Maeda, et al., this workshop]
 - ITB formation by toroidal momentum injection
 - Momentum pinch originated from global profile shear effect of ω_r and ω_f

Development of GKNET

(B-1) Development of real space field solver
 [K. Obrejan, et al., this workshop]
 - Elongation \uparrow or triangularity \uparrow
 - Residual zonal flow level \uparrow

 ![Graph showing the relationship between elongation and triangularity and residual zonal flow level](image)

 - Kinetic electron slab ITG instability \searrow
 - Phase shift between ϕ and δn_e

(B-2) Introduction of kinetic electron
 [R. Yoshida, et al., this workshop]
 - Kinetic electron \rightarrow slab ITG instability \searrow
 - Phase shift between ϕ and δn_e
 - Momentum pinch originated from global profile shear effect of ω_r and ω_f \rightarrow residual ZF level \uparrow
Profile stiffness is a long standing problem, which may limit the overall performance of H-mode plasmas.

In the JET experiment, while strong temperature profile stiffness is observed, it can be greatly reduced by co-current toroidal rotation in weak magnetic shear plasma.

In our flux-driven ITG simulation, we also observe a stiff temperature profile in the absence of momentum source, where not only heat avalanches but also the explosive global transport coupled with the instantaneous formation of radially extended ballooning structure become dominant.

A) Why radially extended structure is formed even in the presence of MF and ZF?
B) What is the stabilization mechanism by co-current toroidal rotation?
Purpose of This Work

Purpose of this work

A) Understand the origin of radially extended ballooning structure in flux-driven ITG turbulence with MF and ZF -> **profile stiffness**

B) Control such structures by momentum injection -> **barrier formation**

Approaches

1. Non-local first-order ballooning theory
 - Notation of θ_b, Δr and γ
 - Impact of MF and toroidal rotation on toroidal ITG mode

2. Global GK ITG simulation w/o mom. source
 - Impact of MF on profile stiffness

3. Global GK ITG simulation with mom. source
 - Impact of momentum injection on profile stiffness
Non-Local Ballooning Theory

$\theta_b = \pm \left| \frac{\partial_r (\omega_r + \omega_f)}{2k_\theta \gamma_0 \hat{s}} \right|^{1/3}$

$\Delta r = \left| \frac{\sin \theta_b}{k_\theta \hat{s}^2 \theta_b^3} \right|^{1/2}$

$\gamma = \gamma_0 \cos \theta_b$

Radial force balance

$E_r - v_\theta B_\phi + v_\phi B_\theta - \frac{1}{n_i e} \frac{\partial p_i}{\partial r} = 0$

$E_r = \frac{r B}{q R} U_\parallel - \frac{T_i}{e} \left(\frac{1}{L_n} + \frac{1 - k}{L_{Ti}} \right)$

$n_i = n_{i0} \exp \left(- \frac{r}{L_n} \right), T_i = T_{i0} \exp \left(- \frac{r}{L_{Ti}} \right)$

Eigenfrequency + Doppler shift frequency

$\omega_r + \omega_f \sim \frac{k_\theta}{eB} \left[\left(\frac{2}{R_0} - \frac{1}{L_n} - \frac{1 - k}{L_{Ti}} \right) T_i - \frac{e r B}{q R} U_\parallel \right]$

✓ Cancellation by mean flow
✓ Impact of toroidal rotation

Diamagnetic drift Mean flow Toroidal rotation

Simulation condition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0/ρ_i</td>
<td>300</td>
</tr>
<tr>
<td>a_0/R_0</td>
<td>0.36</td>
</tr>
<tr>
<td>$(R_0/L_n)_{r=a_0/2}$</td>
<td>0</td>
</tr>
<tr>
<td>$(R_0/L_{T_i})_{r=a_0/2}$</td>
<td>6.92</td>
</tr>
</tbody>
</table>

Numerical results

- **Without E_r**
 - γ: $0.07 \sim 0.12$
 - θ_b: $0.5 \sim 0.6$
 - Δr: $28 \sim 42$

- **With E_r**
 - γ: 0.15
 - θ_b: 0
 - Δr: 49

\[\theta_b = \mp \sqrt[3]{\frac{\partial r(\omega_r + \omega_f)}{2k_\theta \gamma_0 \hat{s}}} \]
Nonlinear Flux-Driven GK ITG Simulation

Simulation condition

- Safety factor q, \hat{s}
- Ion temperature T_i
- Electron temperature T_e
- Ion density n_i

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0/ρ_i</td>
<td>150</td>
</tr>
<tr>
<td>a_0/R_0</td>
<td>0.36</td>
</tr>
<tr>
<td>$(R_0/L_{n})_{r=a_0/2}$</td>
<td>2.22</td>
</tr>
<tr>
<td>$(R_0/L_{T_i})_{r=a_0/2}$</td>
<td>10.0</td>
</tr>
<tr>
<td>$(R_0/L_{T_e})_{r=a_0/2}$</td>
<td>6.92</td>
</tr>
<tr>
<td>ν_*</td>
<td>0.28</td>
</tr>
<tr>
<td>P_{in}</td>
<td>4, 8, 16, 24 [MW]</td>
</tr>
</tbody>
</table>

Source operator

$$S_{src} = A_{src}(r) \tau_{src}^{-1} [f_M(2\bar{T}) - f_M(\bar{T})]$$

- Constant power input near magnetic axis

Sink operator

$$S_{snk} = A_{snk}(r) \tau_{snk}^{-1} [f(t) - f(t = 0)]$$

- Krook-type operator to f in boundary region

[Y. Idomura, et. al., Nucl. Fusion, 49, 065029 (2009).]
Poloidal Symmetry and Profile Stiffness

2D spatial correlation analysis for potential structure (16MW)

Ballooning angle is smaller than that estimated from linear analysis without E_r.

Gradient-Flux relation in power scan test

Nonlinear critical threshold
Discussion - How we can break profile stiffness?

✓ Mean flow shear recovers the symmetry or weakly reverses the ballooning angle so that its stabilization effect is small.

✓ Toroidal rotation can change the mean flow shear through radial force balance, by which we may enhance its stabilization effect.

✓ Especially, toroidal rotation in outer region with small safety factor (weak/reversed magnetic shear) can be effective.
Flux-Driven ITG Simulation with Momentum Source

Simulation condition

- Magnetic shear \hat{s}
- Electron temperature T_e
- Ion density n_i
- Ion temperature T_i

Parameter Value

- a_0/ρ_i: 150
- a_0/R_0: 0.36
- $(R_0/L_n)_{r=a_0/2}$: 2.22
- $(R_0/L_{T_i})_{r=a_0/2}$: 10.0
- $(R_0/L_{T_e})_{r=a_0/2}$: 6.92
- v_*: 0.28
- P_{in}: 4 [MW]
- T_{in}: 11.2 [N·m]

Momentum source operator

$$S_M = \tau_M^{-1} A(r)[f_{LM}(n_0, 0.5v_{ti}, T_0) - f_{LM}(n_0, 0, T_0)]$$

$$f_{LM}(n, U||, T) = \frac{n}{\sqrt{2\pi T^3/m_i^3}} \exp\left[-\frac{0.5(v|| - U||)^2 + \mu B}{T/m_i} \right]$$

We compare two cases;

(A) without momentum source

(B) with momentum source at $r = 90\rho_i$
Strong impact of momentum source at outer region on temperature build-up.

(A) No momentum source

(B) Source at $r = 90 \rho_i$

$\frac{T_i}{T_0}$ vs. $\frac{r}{\rho_i}$
Impact of Momentum Source - 2

Radial force balance: \[E_r + \frac{k}{e} \frac{\partial T_i}{\partial r} - \frac{rB}{qR} U_\parallel - \frac{1}{n_i e} \frac{\partial p_i}{\partial r} = 0 \]

1. Strong correlation
 - No momentum source
 - Source at \(r = 90 \rho_i \)

2. Impact of Momentum Source - 2
 - No momentum source
 - Source at \(r = 90 \rho_i \)

3. Impact of Momentum Source - 3
 - No momentum source
 - Source at \(r = 90 \rho_i \)

4. Impact of Momentum Source - 4
 - No momentum source
 - Source at \(r = 90 \rho_i \)
Impact of Momentum Source - 3

Strong E_r shear triggered by toroidal rotation in outer region suppresses the turbulence, leading to a transport barrier formation.

[M. Kikuchi and M. Azumi, Rev. Mod. Phys. 84, 1807 (2012).]
Only co-current toroidal rotation can benefit the ITB formation in weak magnetic shear plasma.

→ qualitative agreement with the observations in the JET experiment
We have newly developed 5D toroidal full-f gyrokinetic code *GKNET*.

We found that a momentum source can change the mean E_r through the radial force balance, leading to ITB formation.

The underlying mechanism is identified to originate from a positive feedback loop between the enhanced mean E_r shear and resultant momentum pinch, which can be observed only in co-input case.
Future Plans

Flux-driven turbulent transport couple with mean flow

ITB formation in flux-driven ITG turbulence

Introduction of kinetic electron

Magnetic shaping effect on ZF/GAM dynamics

- Opposite ballooning angle
- Density transport
- Momentum transport

Magnetic shaping effect on ITG/TEM instability

- Impact of elongation and triangularity on ITG/TEM turbulence

Control of barrier formation by multi-sources and magnetic shape