Development of a robust scheme for compressible MHD

三好 隆博
広島大学大学院理学研究科
MHD code projects

For laboratory plasmas

<table>
<thead>
<tr>
<th>Project</th>
<th>Developer</th>
<th>MHD Scheme</th>
<th>div B</th>
<th>Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIMROD</td>
<td>Sovinec</td>
<td>FEM(2D)+SP(1D) / implicit</td>
<td>Diffusion</td>
<td>Triangular</td>
</tr>
<tr>
<td>M3D-C¹</td>
<td>Ferraro, Jardin</td>
<td>C¹ FEM / implicit</td>
<td>Vec. pot.</td>
<td>Triangular</td>
</tr>
<tr>
<td>XTOR-2F</td>
<td>Lütjens</td>
<td>FD(1D)+SP(2D) / NK implicit</td>
<td>—</td>
<td>Mag. Flux</td>
</tr>
<tr>
<td>MIPS</td>
<td>Todo</td>
<td>4th FD / 4th RKG</td>
<td>—</td>
<td>Cylindrical</td>
</tr>
<tr>
<td>MINOS</td>
<td>Miura</td>
<td>8th Compact FD / 4th RKG</td>
<td>—</td>
<td>Curvilinear</td>
</tr>
</tbody>
</table>

Any information or corrections are appreciated…

- Extended MHD model
- Not designed for shock capturing
Shocks in space plasmas

Coronal activities (Hinode)

Ubiquitous reconnection / jet (Hinode)

Magnetosphere (SCOPE)

Shock wave

Magnetic Reconnection

Boundary Layer Turbulence

Processes of fundamental importance in the Plasma Universe

Magnetosphere (Artist's image/NASA)

Heliosphere (Artist's image/NASA)

Astrospheres

Jets from Young Stars

HST - WFPC2

Jet from black hole (ATCA)
Motivation and objectives

- In compressible MHD codes for laboratory plasmas, time integration methods have been polished so as to solve stiff problems.

- But, those codes are not designed for shock capturing that may be needed in the near future. (e.g., HiFi code at PSI-Center)

- Shocks and turbulence are universally observed in space. Thus, the development of robust shock capturing schemes has been highly progressed.

- Current status and challenges of the shock capturing scheme for MHD are presented with emphasis on our results.
Compressible MHD equations

- Ideal MHD equations (Non-conservative form)

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \quad : \text{continuity equation} \]

\[\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mathbf{J} \times \mathbf{B} \quad : \text{equation of motion} \]

\[\frac{\partial}{\partial t} \left(\frac{p}{\rho^\gamma} \right) + \mathbf{v} \cdot \nabla \left(\frac{p}{\rho^\gamma} \right) = 0 \quad : \text{adiabatic equation} \]

\[\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0, \quad \nabla \cdot \mathbf{B} = 0 \quad : \text{induction equation} \]

- Various non-conservative forms can be obtained using vector identities
Compressible MHD equations

- Ideal MHD equations *(Conservative form)*

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \quad : \text{mass conservation} \\
\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} + p_T \mathbf{I} - \mathbf{B} \mathbf{B}) &= 0 \quad : \text{momentum conservation} \\
\frac{\partial e}{\partial t} + \nabla \cdot \left[(e + p_T) \mathbf{v} - \mathbf{B} (\mathbf{v} \cdot \mathbf{B}) \right] &= 0 \quad : \text{energy conservation} \\
\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v} \mathbf{B} - \mathbf{B} \mathbf{v}) &= 0 \quad : \text{flux conservation} \\
\nabla \cdot \mathbf{B} &= 0 \ , \quad p = (\gamma - 1) \left(e - \frac{\rho v^2}{2} - \frac{B^2}{2} \right) \ , \quad p_T = p + \frac{B^2}{2}
\end{align*}
\]
Shock capturing scheme

- Non-conservative scheme
 - Based on non-conservative form
 - Converge to unphysical shock
 Hou-LeFloch [1994]

- Conservative scheme
 - Based on conservative form
 - Converge to physical shock
 Lax-Wendroff [1960]
 Harten [1980]
 - Difficult to preserve positivity

Conservative vs Non-conservative

“Computational Tutorial: MHD”, Toth
Shock capturing scheme

- Non-conservative scheme
 - Finite difference method
 - Finite element method

- Conservative scheme
 - Finite difference method
 - FD-WENO, Compact FD+LAD, etc.
 - Finite element method
 - RKDG, etc.
 - Finite volume method
 - MUSCL, FV-WENO, etc.
Shock capturing scheme

1D finite volume method

\[\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0 \Rightarrow \frac{d}{dt} \bar{u}_i + \frac{f(u(x_{i+1/2}, t)) - f(u(x_{i-1/2}, t))}{\Delta x} = 0 \]

\[
\begin{array}{c|c|c|c}
\text{f}_{i-1/2} & \bar{u}_{i-1} & \text{f}_{i+1/2} & \bar{u}_{i+2} \\
\text{x}_{i-1/2} & \text{ } & \text{x}_{i+1/2} & \text{ }
\end{array}
\]

Numerical flux

\[f(u(x_{i+1/2}, t)) \equiv f_{i+1/2} = f(\cdots, \bar{u}_{i-1}, \bar{u}_i, \bar{u}_{i+1}, \bar{u}_{i+2}, \cdots) \]
Approximate Riemann solver

- Approximate Riemann solver

\[\int \int \left(\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} \right) dx dt = \int \left(Ud\mathbf{x} - F dt \right) = 0 \]

- Define piecewise constants

\[U \]

\[x \]
Approximate Riemann solver

- Approximate Riemann solver

\[\int\int \left(\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} \right) dx dt = \int (U dx - F dt) = 0 \]

- Define piecewise constants
- Solve local Riemann problems
Riemann problem

- Riemann problem = Shock tube problem
- 7-waves can be excited in 1D MHD system (shock, expansion wave, compound wave)

\[U = U\left(\frac{x}{t}; U_R, U_L\right) \]

\[FS / FR \quad RD \quad SS / SR \quad CD \quad SS / SR \quad RD \quad FS / FR \]

\[U_L \quad U_R \]
Approximate Riemann solver

- Approximate Riemann solver

\[
\iint \left(\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} \right) dx \, dt = \oint (U \, dx - F \, dt) = 0
\]

- Define piecewise constants
- Solve local Riemann problems
- Average state variables
Approximate Riemann solver

- Define piecewise constants
- Solve local Riemann problems
- Average state variables
- Derive numerical fluxes from conservation laws

\[\iint \left(\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} \right) dx dt = \int (U dx - F dt) = 0 \]

\[\int_{x_i}^{x_{i+1/2}} U \left(\frac{x - x_{i+1/2}}{\Delta t}; U_i^n, U_{i+1}^n \right) dx - (x_{i+1/2} - x_i) U_i^n + \Delta t (F_{i+1/2} - F_i^n) = 0 \]

Depend on “quality” of approximate solutions!
Approximate Riemann solver

- Standard approximate Riemann solver
 - Lax-Friedrichs scheme [Lax, 1950’s]
 - Godunov scheme [Godunov, 1959]
 - Rusanov scheme [Rusanov, 1961]
 - Roe scheme (HD) [Roe, 1981]
 - HLL scheme [Harten+ 1983]
 - Roe scheme (MHD) [Brio+, 1988]
 - HLLC scheme (HD) [Toro+, 1994; Batten+ 1997]
 - HLLC scheme (MHD) [Gurski, 2004; Li, 2005]
 - HLLD scheme (MHD) [Miyoshi+, 2005]
HLL approximate Riemann solver

- HLL Riemann solver [Harten+, 1983]
 - Conservation laws
 - 2-waves approximation

\[\begin{align*}
 &S_L, S_R: \text{max./min. speeds} \\
 &S_R = \max(u_L + c_L, u_R + c_R, 0) \\
 &S_L = \min(u_L - c_L, u_R - c_R, 0) \\
 &\int (Udx - Fdt) = 0 \implies (S_R - S_L)U^* - S_R U_R + S_L U_L + F_R - F_L = 0 \\
 &\text{CD/TD/RD cannot be resolved}
\end{align*} \]
HLL approximate Riemann solver

- HLL Riemann solver [Harten+, 1983]
 - Conservation laws
 - 2-waves approximation

\[
S_{R,L} : \max/\min \text{ speeds}
\]

\[
S_R = \max(u_L + c_L, u_R + c_R, 0)
\]

\[
S_L = \min(u_L - c_L, u_R - c_R, 0)
\]

\[
\int (Udx - Fdt) = 0 \Rightarrow S_RU^* - S_RU_R + F_R - F^* = 0
\]

- CD/TD/RD cannot be resolved
HLLD approximate Riemann solver

- HLLD Riemann solver [Miyoshi+, 2005]
 - Conservation laws
 - 5-waves approximation

\[
S_{R,L} \left(U_{R,L}^* - U_{R,L} \right) = F_{R,L}^* - F_{R,L}, \quad S_{R,L}^* \left(U_{R,L}^* - U_{R,L}^* \right) = F_{R,L}^{**} - F_{R,L}^*,
\]

\[
S_M \left(U_R^{**} - U_L^{**} \right) = F_R^{**} - F_L^{**}, \quad \frac{1}{\Delta t} \int_{S_L \Delta t} S_R U \left(x, t^{n+1} \right) dx + S_R U_R - S_L U_L + F_R - F_L = 0
\]

\[S_{R,L}^* : \text{fast magnetosonic wave}\]
\[S_M^* : \text{entropy wave}\]
\[S_{R,L}^* : \text{Alfvén wave}\]
HLLD approximate Riemann solver

- The HLLD Riemann solver
 - is constructed without eigenvectors
 - exactly resolves isolated CD/TD/RD/FS
 - preserves density and pressure positivities

- High-efficiency! High-resolution! Robust!
HLLD approximate Riemann solver

- Established as a standard Riemann solver
 - Comparing numerical methods [Kritsuk+, 2011]

<table>
<thead>
<tr>
<th>Name</th>
<th>Base Scheme</th>
<th>Spatial Order</th>
<th>Source Terms</th>
<th>MHD</th>
<th>Time Integration</th>
<th>Directional Splitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENZO</td>
<td>FV, HLL</td>
<td>Second</td>
<td>Dedner</td>
<td>Dedner</td>
<td>Second-order RK</td>
<td>Direct</td>
</tr>
<tr>
<td>FLASH</td>
<td>FV, HLLD</td>
<td>Second</td>
<td>π Derivative</td>
<td>Third-order CT</td>
<td>Forward Euler</td>
<td>\perp Reconstruction</td>
</tr>
<tr>
<td>KT-MHD</td>
<td>FD, CWENO</td>
<td>Third</td>
<td>KT</td>
<td>Third-order CT</td>
<td>Fourth-order RK</td>
<td>Direct</td>
</tr>
<tr>
<td>LL-MHD</td>
<td>FV, HLLD</td>
<td>Second</td>
<td>None</td>
<td>Athena CT</td>
<td>Forward Euler</td>
<td>Split</td>
</tr>
<tr>
<td>PLUTO</td>
<td>FV, HLLD</td>
<td>Third</td>
<td>Powell</td>
<td>Powell</td>
<td>Fourth-order RK</td>
<td>Direct</td>
</tr>
<tr>
<td>PPML</td>
<td>FV, HLLD</td>
<td>Third</td>
<td>None</td>
<td>Athena CT</td>
<td>Forward Euler</td>
<td>\perp Reconstruction</td>
</tr>
<tr>
<td>RAMSES</td>
<td>FV, HLLD</td>
<td>Second</td>
<td>None</td>
<td>2D HLLD CT</td>
<td>Forward Euler</td>
<td>\perp Reconstruction</td>
</tr>
<tr>
<td>STAGGER</td>
<td>FD, Stagger</td>
<td>Sixth</td>
<td>Tensor</td>
<td>Staggered CT</td>
<td>Third-order Hyman</td>
<td>Direct</td>
</tr>
<tr>
<td>ZEUS</td>
<td>FD, van Leer</td>
<td>Second</td>
<td>von Neumann</td>
<td>MOC-CT</td>
<td>Forward Euler</td>
<td>Split</td>
</tr>
</tbody>
</table>

Notes.
- See Section 3 and the indicated sections on each topic for more information.
- Base method. FD for finite difference, FV for finite volume. FV techniques have the Riemann solver listed, Section 6.3.
- Spatial order of accuracy, Section 6.1.
- Artificial Viscosity, Section 6.2. “π Derivative” indicates presence of terms proportional to the longitudinal derivative of the magnetic field.
- MHD method, Section 6.4.
- Time integration method, Section 6.6.3.
- Multidimensional technique, Section 6.6.2. “\perp Reconstruction” indicates presence of transverse derivatives in the interface reconstruction.

- Athena (US), CANS+ (Japan), and many other researches
Challenges

- Challenges to multi-D MHD scheme

 Comparing numerical methods [Kritsuk+, 2011]

<table>
<thead>
<tr>
<th>Name</th>
<th>Base Scheme</th>
<th>Spatial Order</th>
<th>Source Terms</th>
<th>MHD</th>
<th>Time Integration</th>
<th>Directional Splitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENZO</td>
<td>FV, HLL</td>
<td>Second</td>
<td>Dedner</td>
<td>Dedner</td>
<td>Second-order RK</td>
<td>Direct</td>
</tr>
<tr>
<td>FLASH</td>
<td>FV, HLLD</td>
<td>Second</td>
<td>11 Derivative</td>
<td>Third-order CT</td>
<td>Forward Euler</td>
<td>Reconstruction</td>
</tr>
<tr>
<td>KT-MHD</td>
<td>FD, CWENO</td>
<td>Third</td>
<td>KT</td>
<td>Third-order CT</td>
<td>Fourth-order RK</td>
<td>Direct</td>
</tr>
<tr>
<td>LL-MHD</td>
<td>FV, HLL</td>
<td>Second</td>
<td>None</td>
<td>Athena CT</td>
<td>Forward Euler</td>
<td>Split</td>
</tr>
<tr>
<td>PLUTO</td>
<td>FV, HLLD</td>
<td>Third</td>
<td>Powell</td>
<td>Powell</td>
<td>Fourth-order RK</td>
<td>Direct</td>
</tr>
<tr>
<td>PPML</td>
<td>FV, HLLD</td>
<td>Third</td>
<td>None</td>
<td>Athena CT</td>
<td>Forward Euler</td>
<td>Reconstruction</td>
</tr>
<tr>
<td>RAMSES</td>
<td>FV, HLLD</td>
<td>Second</td>
<td>None</td>
<td>2D HLLD CT</td>
<td>Forward Euler</td>
<td>Reconstruction</td>
</tr>
<tr>
<td>STAGGER</td>
<td>FD, Stagger</td>
<td>Sixth</td>
<td>Tensor</td>
<td>Staggered CT</td>
<td>Third-order Hyman</td>
<td>Direct</td>
</tr>
<tr>
<td>ZEUS</td>
<td>FD, van Leer</td>
<td>Second</td>
<td>von Neumann</td>
<td>MOC-CT</td>
<td>Forward Euler</td>
<td>Split</td>
</tr>
</tbody>
</table>

Notes.

- See Section 3 and the indicated sections on each topic for more information.
- Base method. FD for finite difference, FV for finite volume. FV techniques have the Riemann solver listed, Section 6.3.
- Spatial order of accuracy, Section 6.1.
- Artificial Viscosity, Section 6.2. “11 Derivative” indicates presence of terms proportional to the longitudinal derivative of the magnetic field.
- MHD method, Section 6.4.
- Time integration method, Section 6.6.3.
- Multidimensional technique, Section 6.6.2. “⊥ Reconstruction” indicates presence of transverse derivatives in the interface reconstruction.
Challenges to multi-D

- Treatment of numerical magnetic monopole
 - Negative effect due to unphysical magnetic force
 \[-\nabla \cdot \left(B^2 / 2 I - BB \right) = (\nabla \times B) \times B + B(\nabla \cdot B)\]
 - Need divergence-free/divergence-cleaning method!
Challenges to multi-D

Treatment of numerical magnetic monopole

Can numerical simulations preserve \(\nabla \cdot \mathbf{B} = 0 \)?
Challenges to multi-D

- Numerical shock instabilities
 - Odd-even decoupling
 - Carbuncle phenomena
Challenges

- Challenges to higher-order MHD scheme
 - Comparing numerical methods [Kritsuk+, 2011]

<table>
<thead>
<tr>
<th>Name</th>
<th>Base Scheme</th>
<th>Spatial Order</th>
<th>Source Terms</th>
<th>MHD</th>
<th>Time Integration</th>
<th>Directional Splitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENZO</td>
<td>FV, HLL</td>
<td>Second</td>
<td>Dedner</td>
<td>Dedner</td>
<td>Second-order RK</td>
<td>Direct</td>
</tr>
<tr>
<td>FLASH</td>
<td>FV, HLLD</td>
<td>Second</td>
<td>n Derivative</td>
<td>Third-der CT</td>
<td>Forward Euler</td>
<td>∥ Reconstruction</td>
</tr>
<tr>
<td>KT-MHD</td>
<td>FD, CWENO</td>
<td>Third</td>
<td>KT</td>
<td>Third-der CT</td>
<td>Forward Euler</td>
<td>Direct</td>
</tr>
<tr>
<td>LL-MHD</td>
<td>FV, HLLD</td>
<td>Second</td>
<td>None</td>
<td>Athena CT</td>
<td>Forward Euler</td>
<td>Split</td>
</tr>
<tr>
<td>PLUTO</td>
<td>FV, HLLD</td>
<td>Third</td>
<td>Powell</td>
<td>Powell</td>
<td>Fourth-order RK</td>
<td>Direct</td>
</tr>
<tr>
<td>PPML</td>
<td>FV, HLLD</td>
<td>Third</td>
<td>None</td>
<td>Athena CT</td>
<td>Forward Euler</td>
<td>∥ Reconstruction</td>
</tr>
<tr>
<td>RAMSES</td>
<td>FV, HLLD</td>
<td>Second</td>
<td>None</td>
<td>2D HLLD CT</td>
<td>Forward Euler</td>
<td>∥ Reconstruction</td>
</tr>
<tr>
<td>STAGGER</td>
<td>FD, Stagger</td>
<td>Sixth</td>
<td>Tensor</td>
<td>Staggered CT</td>
<td>Third-order Hyman</td>
<td>Direct</td>
</tr>
<tr>
<td>ZEUS</td>
<td>FD, van Leer</td>
<td>Second</td>
<td>von Neumann</td>
<td>MOC-CT</td>
<td>Forward Euler</td>
<td>Split</td>
</tr>
</tbody>
</table>

Notes.
- a See Section 3 and the indicated sections on each topic for more information.
- b Base method. FD for finite difference, FV for finite volume. FV techniques have the Riemann solver listed, Section 6.3.
- c Spatial order of accuracy, Section 6.1.
- d Artificial Viscosity, Section 6.2. “n Derivative” indicates presence of terms proportional to the longitudinal derivative of the magnetic field.
- e MHD method, Section 6.4.
- f Time integration method, Section 6.6.3.
- g Multidimensional technique, Section 6.6.2. “∥ Reconstruction” indicates presence of transverse derivatives in the interface reconstruction.
Challenges to higher-order

- Importance of higher-order methods
 - Error of nth-order method vs. Computational cost

\[\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \]
\[u(x, t = 0) = \sin(2\pi x) \]
\[L1 \equiv \frac{1}{N} \sum_{i} |u_i - u(x_i, t)| \]
Challenges to higher-order

- Godunov’s theorem
 - Any linear monotone scheme (non-oscillatory scheme) can be at most first-order accurate.
 - This statement suggests that higher-order non-oscillatory scheme can be constructed as a nonlinear scheme.
 - TVD, MUSCL, PPM, WENO, etc.

Very-high-order WENO (up to 17th-order) [Gerolymos+, 2009]
Challenges

- *Multi-dimensional higher-order divergence-free* scheme is one of the goals of shock capturing scheme for MHD
Summary

- I have reported current status and challenges of robust shock capturing schemes for MHD
 - The HLLD has been established as a standard MHD solver in the field of astrophysics
 - Multi-D shock capturing scheme for MHD is one of the challenges
 - Treatment of numerical magnetic monopole
 - Treatment of numerical shock instabilities
 - Higher-order shock capturing scheme for MHD is one of the challenges
 - Study on shock capturing scheme for two-fluid / extended MHD is now progressing…