Multi-Time-Scale Energetic Particle Dynamics in JT-60U Simulated with MHD Activity, Sources and Collisions

A. Bierwage¹, K. Shinohara¹, Y. Todo², M. Yagi¹

¹: Japan Atomic Energy Agency, Japan
²: National Institute of Fusion Science, Japan

Discussions with K. Tani (NAT, Japan) are thankfully acknowledged.

This work is partially supported by JSPS Grants.

The simulations were carried out using the supercomputer system HELIOS at IFERC, Aomori, Japan, under the BA collaboration between Euratom and Japan, implemented by F4E and JAEA.

20th NEXT Workshop, Kyoto, Japan, January 13-14, 2015
PREAMBLE:

Nuclear Fusion Research at JAEA

and

20 Years of Numerical EXperimental Tokamak (NEXT) Project
Fusion reaction most easily realized in lab: $T(d,n)^4He$
Final goal: Electric power plants driven by D-T fusion

Figures: iter.org (reaction, power plant)
Mainstream: Self-sustained “burning” tokamak plasma

Figures: iter.org (reaction, power plant)
“Harnessing the Power of Stars” J.Tachon, P.-J. Paris (tomamak)
Burning plasma physics research at JAEA

Physics Understanding of Tokamak Plasmas

- Driven nonlinear system of interacting electromagnetic fields and charged particles
- Densities n, currents J, pressure P
- Electric field E, magnetic field B
- Thermal ions, electrons
- Energetic ions
- Energetic neutrons
- External heating, particle beams
- Toroidal magnetic confinement
- Possibilities, constraints
- Interpretation, prediction
- Theory, modeling & simulation
- JT-60U Experiment
- Power Plant Design

Figures: www-jt60.naka.jaea.go.jp (JT-60U)
“Harnessing the Power of Stars” J.Tachon, P.-J. Paris (tomamak)
Numerical EXperiment of Tokamak (NEXT) Project

Started in 1996 at JAEA, the main objectives of the NEXT project* are

1. to understand complex physical processes in present-days and next-generation tokamak plasmas,
2. to predict and evaluate the plasma performance of tokamak reactors, such as ITER (International Thermonuclear Experimental Reactor), and
3. to contribute to the progress in plasma physics and related research areas via numerical simulation.

Focus of this talk:
Advances in the study of interaction between MHD waves and fast ions.

INTRODUCTION:

MHD Waves and Energetic Ions in Tokamak Plasmas
JT-60U plasma in reactor-relevant parameter regime

- **High plasma beta:**
 \[
 \beta = \frac{2\mu P}{B^2} \approx 3.5\% \quad \text{(power plant: } \beta \sim 5\% \text{)}
 \]

- **Fast ions generated by powerful energetic particle beams:**
 up to 400 keV, 5 MW, \(\beta_{\text{fast}} \sim \beta_{\text{total}}/2 \) \(\text{(power plant: 3.5 MeV } ^4\text{He)} \)
Physical effects governing fast ion dynamics in core plasma

1) Expansion free energy in gradients:
\[\frac{d\beta_{\text{fast}}}{dr} < 0 \]

Fast ion sources, sinks, collisions

2) Resonances:
\[\omega_{\text{fast}} \approx \omega_{\text{SAW}} \]

Magnetically confined fast ion orbits

Shear Alfven waves (SAW)

Challenges: multiple time scales and complicated nonlin. interactions
Current research activities

- Study dynamics of fast-ion-driven modes.
- Analysis of linear and nonlinear resonant wave-particle interactions.
- Fast ion transport and bulk heating.
- Comparison between simulations and experiments (V&V).
Current research activities discussed in this talk

- Study dynamics of fast-ion-driven modes.
- Analysis of linear and nonlinear resonant wave-particle interactions.
- Fast ion transport and bulk heating.
- Comparison between simulations and experiments (V&V).

“Multi-Time-Scale Energetic Particle Dynamics: Dynamics of Energetic Particle Modes in JT-60U Simulated with MHD Activity, Sources and Collisions”
Outline

“Multi-Time-Scale Dynamics of Energetic Particle Modes in JT-60U”

1. Simulation model and methods:
 Advances towards predictive simulations for energetic particle dynamics

2. Meso- and long time scale (0.5 ms - 40 ms):
 Reproduced chirping bursts of JT-60U exp.

3. Short and meso-time scale (10 µs - few ms):
 Predicted+confirmed pulsations and phase jumps

4. Summary, conclusion, outlook

A. Computational parameters, resources, efficiency.
 Fast ion redistribution due to MHD activity.
Conventional approach: Separation of temporal scales

Pros: Clear separation of physical effects. Trends revealed by varying free parameters. [e.g., Bierwage et al., *Nucl. Fusion* **54** (2014) 104001]

Cons: Overestimation of fast ion confinement in MC codes. Overestimation of fluctuation level and transport in instability codes.
Advanced method: Self-consistent long-time simulation

Pros: Meso-t-scale dynamics covered. Bridge between models and experiments.

Cons: Complicated. Computationally expensive.

[2014 IAEA FEC: Todo TH/7-1, Bierwage TH/P7-39]
Hybrid model for MHD and fast ion dynamics in MEGA

- **Bulk plasma modeled as 3-D MHD fluid:** full MHD model, \((R, \varphi, Z)\) finite difference grid, 4th-order Runge-Kutta solver

\[
\rho_m \frac{\partial_t \mathbf{V}}{} = -\rho_m \left[\Omega \times \mathbf{V} + \frac{1}{2} \nabla \mathbf{V}^2 \right] + (\mathbf{J} - \mathbf{J}_{\text{eff}}^{\text{fast}}) \times \mathbf{B} - \nabla P \tag{1}
\]

\[- \rho_m \left[\nu \nabla \times \Omega - \frac{4}{3} \nu \nabla (\nabla \cdot \mathbf{V}) \right],
\]

\[
\frac{\partial_t \mathbf{B}}{} = -\nabla \times \mathbf{E}, \tag{2}
\]

\[
\frac{\partial_t \rho_m}{\partial_t} = -\nabla \cdot (\rho_m \mathbf{V}), \tag{3}
\]

\[
\frac{\partial_t P}{\partial_t} = -\nabla \cdot (P \mathbf{V}) - (\Gamma - 1) P \nabla \cdot \mathbf{V} \tag{4}
\]

\[(\Gamma - 1) \left\{ \eta \mathbf{J}^2 + \nu \rho_m [\Omega^2 + \frac{4}{3} (\nabla \cdot \mathbf{V})^2] \right\};
\]

with \(\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J}, \mu_0 \mathbf{J} = \nabla \times \mathbf{B}, \Omega = \nabla \times \mathbf{v}\) and no-slip boundary.

- **Fast ions modeled as guiding centers:** PIC method, \(d\mu/dt = 0\)

\[
\frac{d_t \mathbf{R}_{\text{gc}}}{\partial_t} = \mathbf{v}_\parallel^* + \mathbf{v}_E + \mathbf{v}_B, \quad m \mathbf{v}_\parallel \frac{d_t \mathbf{v}_\parallel}{\partial_t} = \mathbf{v}_\parallel^* \cdot [e_H \mathbf{E} - \mu \nabla \mathbf{B}] \tag{5}
\]

with \(\mathbf{v}_\parallel^* = \mathbf{v}_\parallel [\mathbf{B} + \rho_\parallel B \nabla \times \mathbf{b}] / B^*, \rho_\parallel = \mathbf{v}_\parallel / \Omega_L, B^* = B(1 + \rho_\parallel \mathbf{b} \cdot \nabla \times \mathbf{b}).\)

Loss boundary condition at wall. FLR simulated via satellite particles. Trubnikov collision operators (slowing down, scattering, diffusion).

Simulation setup: JT-60U shot E039672 @ \(t = 4s \)

MHD equilibrium and profiles:
- \(\mathbf{B}(R, Z), P(R, Z) \) reconstructed numerically
- enforce \(\nabla P_{\text{eq}} = \mathbf{J}_{\text{eq}} \times \mathbf{B}_{\text{eq}} \), fit \(n_{\text{i}}^{\text{exp}} \)

Coupling between MHD and fast ions:
- include only \(n = 1 \) harmonic
 (wavelength = torus circumference)
 to focus on \(n = 1 \) modes observed in exp.

Fast ion source:
- deposition profile computed for pair of tangential N-NBs
Outline

“Multi-Time-Scale Dynamics of Energetic Particle Modes in JT-60U”

1. Simulation model and methods:
 Advances towards predictive simulations
 for energetic particle dynamics

2. Meso- and long time scale (0.5 ms - 40 ms):
 Reproduced chirping bursts of JT-60U exp.

3. Short and meso-time scale (10 μs - few ms):
 Predicted+confirmed pulsations and phase jumps

4. Summary, conclusion, outlook

A. Computational parameters, resources, efficiency.
 Fast ion redistribution due to MHD activity.
MHD dynamics on 0.5 ms - 40 ms scale

V&V: Reproduced chirping bursts of JT-60U

Power spectra of magnetic fluctuations δB_θ

- **Robust features:**
 - down-/up-chirping in 40-60 kHz band,
 - few ms life time,
 - periods of 5-15 ms.

- **Agreement shows that:**
 - essential mechanisms of fast ion dynamics and plasma response are modelled correctly,
 - sim. results are relevant for rapidly chirping bursts.

- **Note:**
 - sim. measures signals at the mode location
 - exp. measurements are done outside of the plasma
FLR effect (gyroaveraging) proved to be essential for reproducing intermittency of bursts

- FLR effect in the form of gyroaveraging (often ignored previously) reduces wave-particle coupling strength and leads to
 - Longer quiet periods between bursts.
 - Lower fluctuation levels during quiet periods.

⇒ New mechanism (besides damping) that controls intermittency!

[For damping effect, see Todo et al., *Nucl. Fusion* 52 (2012) 033003]
Effect of sources and collisions (S&C) on bursts

Results of turning S&C off at (b) peak or (c) start of a burst:

- (b): Decay phase and chirping indep. of S&C.
- (c): S&C is essential for rise of base level of fluctuation energy, but even without S&C burst and chirps still occur at lower amplitude.

Implications:

- No retardation. ⇔ Dominant resonances are near birth energy.*
- We may learn sth. about deviation from marginal stability. ⇒ Study more!

(*) Bierwage & Shinohara, Phys. Plasmas 21 (2014) 112116
“Multi-Time-Scale Dynamics of Energetic Particle Modes in JT-60U”

1. Simulation model and methods:
 Advances towards predictive simulations for energetic particle dynamics

2. Meso- and long time scale (0.5 ms - 40 ms):
 Reproduced chirping bursts of JT-60U exp.

3. Short and meso-time scale (10 µs - few ms):
 Predicted + confirmed pulsations and phase jumps

4. Summary, conclusion, outlook

A. Computational parameters, resources, efficiency.
 Fast ion redistribution due to MHD activity.
MHD dynamics on 10 µs - few ms scale

- Previously reported chirping dynamics based on 0.4-1 ms FT windows.
- However: Time traces of raw signal exhibit pulsations on shorter scale.
MHD dynamics on 10 µs - few ms scale

Found: Pulsations and phase jumps

- Analysis on 0.04 ms scale reveals: Phase jumps (±π) between pulses. Wave freq. varies less (±2.5 kHz) than averaged chirps (±5 kHz).
MHD dynamics on 10 \(\mu s\) - few ms scale

Found: Pulsations and phase jumps

- Pulses and phase jumps discovered in sim. are also found in exp. data.
- Not considered in theories for chirping. ⇒ Improve physical picture!
Resonant drive at certain freq. keeps phases of dispersive waves aligned.

Complicated interaction between mode structure and fast ion distrib.

Struct. of Shear Alfvén Wave continuum affects chirping

For ideal monoatomic gas (3 degrees of freedom, isotropic collisions)
\[\Gamma = \frac{C_p}{C_V} = 1 + \frac{2}{F} = \frac{5}{3}. \]
For strongly magnetized tokamak plasma (electrons, deuterons, high-Z impurities) appropriate \(\Gamma \) value not known.

\[\partial_t P = - \nabla \cdot (P \mathbf{V}) - (\Gamma - 1) P \nabla \cdot \mathbf{V} \]

\(\Gamma \) affects dominant direction of chirping:

- \(\Gamma = 1 \): see more up–chirps
- \(\Gamma = 3 \): see more down–chirps

Dominant component of signal tends to chirp towards nearest accumulation point, where \(d\omega_A(r)/dr \) is small.

One out of several new ingredients for a complete theory of chirping.
Spatial-temporal pulsation of EPM: Summary

Distinguish 2 interconnected phenomenological aspects

1. Pulsation in amplitude and width
2. Multi-t-scale frequency evolution

(a) 10 μs phase jump (± π)
(b) 1 ms fast chirps
(c) 10 ms slow chirps
To complete the picture: Clarify self-consistent evolution of drive.

Outline

“Multi-Time-Scale Dynamics of Energetic Particle Modes in JT-60U”

1. Simulation model and methods:
 Advances towards predictive simulations
 for energetic particle dynamics

2. Meso- and long time scale (0.5 ms - 40 ms):
 Reproduced chirping bursts of JT-60U exp.

3. Short and meso-time scale (10 μs - few ms):
 Predicted+confirmed pulsations and phase jumps

4. Summary, conclusion, outlook

A. Computational parameters, resources, efficiency.
 Fast ion redistribution due to MHD activity.
Summary and conclusion

- **Major numerical advances:**
 1. Developed self-consistent simulation framework with MHD, sources and collisions: Promises new insights and better predictions!

- **Multi-time-scale simulation results:**
 2. Reproduced rapid chirps (∼1 ms) from experiments and demonstrated importance of fast ion FLR effects: Successful V&V!
 3. Analysis of chirps revealed spatio-temporal pulsations of EPMs (∼100 µs) and phase jumps (∼10 µs) in both sim. & exp.: Successful V&V. New building blocks for more complete theory of chirping modes.

- **Open questions:**
 - Reason for ±π phase jumps?
 - Particle dynamics during EPM pulsation?
Outlook

Power spectra of magnetic fluctuations δB_θ

- **Simulation**
 - (a) Start of injection at full power
 - (b) Long-lived chirping modes
 - (c) Abrupt Large Events (ALE)

Shot 39672

- Fully developed fast ion tail (few keV ... 400 keV)

Shot 32359

- Abrupt Large−amplitude Event (ALE)

Physics:
- Wave-particle interactions.
- Burstiness and marginal stability.
- Kinetic effects of bulk ions, bulk ion heating.

V&V, Prediction:
- Apply to other machines and other modes.

Long-lived chirping modes:
- Lasting about 5 ms
- Sensitive to plasma equil.
- May require fully developed fast ion tail (below 300 keV)

Abrupt Large Events
- 4-10 times larger δB_θ
- May involve $n > 1$ modes

(*) Bierwage et al, Nucl. Fusion 54 (2014) 104001
Outline

“Multi-Time-Scale Dynamics of Energetic Particle Modes in JT-60U”

1. Simulation model and methods:
 Advances towards predictive simulations
 for energetic particle dynamics

2. Meso- and long time scale (0.5 ms - 40 ms):
 Reproduced chirping bursts of JT-60U exp.

3. Short and meso-time scale (10 μs - few ms):
 Predicted+confirmed pulsations and phase jumps

4. Summary, conclusion, outlook

A. Computational parameters, resources, efficiency.
 Fast ion redistribution due to MHD activity.
A1. Numerical parameters and computational resources

- Setup discussed here:
 - MHD fluctuations with single toroidal mode number $n = 1$ interacting with 2 fast ion beams
 - Step size: $\Delta t_{\text{MHD}} = 0.05 \tau_{A0} = 0.04 \mu s$ ($\Delta t_{\text{PIC}} = 4 \times \Delta t_{\text{MHD}}$)
 - Spatial grid: $N_R \times N_\phi \times N_Z = 384 \times 32 \times 352$
 - MPI domains: $M_R \times M_\phi \times M_Z = 32 \times 4 \times 32$
 (4096 MPI processes on 256 nodes with 16 cores each)

- Simulation of 50 ms physical time:
 - 13.9×10^6 time steps, accumulating 3.38×10^6 simulation particles
 - Wall time: 11.3 days for 25 ms, 26 days for 50 ms (160k node hours)

HELIOS
at
IFERC-CSC

http://www.iferc.org/csc/csc_for_researchers/csc_introduction.html
A2. Compromise: Multi-phase simulation method

- **Pros:** Efficient and useful for prediction of realistic fast ion profiles.

 [Todo et al., Nucl. Fusion 54 (2014) 104012]

- **Cons:** Only rudimentary meso-\(t\)-scale dynamics (\(\lesssim 1\) ms).
A3. Effect of MHD activity on fast ion distribution

- Classical (no MHD): Overestimates fast ion gradients \Rightarrow unstable.
- Self-consistent: Fast ion energy in central core reduced by $\approx 15\%$.

![Spatially integrated velocity distribution](image1)

![Velocity-integrated radial profile $t = 50$ ms](image2)
A3. Effect of MHD activity on fast ion distribution

- Classical (no MHD): Overestimates fast ion gradients ⇒ unstable.
- Self-consistent: Fast ion energy in central core reduced by ≈ 15%.
- Multi-phase (MHD 1ms on/4ms off): Reproduces self-consist. sim. result.
A3. Effect of MHD activity on fast ion distribution

Spatially integrated velocity distribution

Converged energy window: $E = 320 \ldots 400$ keV

Velocity–integrated radial profile $t = 50$ ms

- Classical (no MHD): Overestimates fast ion gradients ⇒ unstable.
- Self-consistent: Fast ion energy in central core reduced by $\approx 15\%$.
- Multi-phase (MHD 1ms on/4ms off): Reproduces self-consist. sim. result.
A4. Effect of MHD activity on fast ion distribution

Found: FLR affects transport in radius and energy

- Spatially integrated velocity distribution
- Velocity–integrated radial profile $t = 50$ ms

- Converged energy window: $E = 320 \ldots 400$ keV

- Fast ion transport to:
 1) larger radii (\leftarrow MHD),
 2) lower energies (\leftarrow collisions with thermal particles and MHD).

- Drift-kinetic (no FLR): Underestimates radial transport by $\lesssim 5\%$.
 Overestimates energy transfer to bulk plasma by $\lesssim 5\%$. For $n = 1$!