Abstract

Confinement of α-particles is investigated including the collisions with various plasma species such as electron, deuterium, tritium, and high-energy α-particle itself in a heliotron fusion reactor, which is based on the LHD configurations. GNET (Global NEoclassical Transport) code is being improved to take into account the nonlinear collision effect on the α-particle confinement. The code is benchmarking with the linear operator in the shifted Maxwellian plasma.

Simulation model

GNET code

We solve the drift kinetic equation in the 5D phase-space with pitch angle and energy scattering using the GNET code (Global NEoclassical Transport code) [4].

The drift kinetic equation

\[
\frac{\partial f_\alpha}{\partial t} + (\mathbf{v}_{\parallel} + \mathbf{v}_D + \mathbf{v}_D^* \cdot \nabla) f_\alpha = C^{\text{coll}}(f_\alpha)+L^{\text{lossy}}(f_\alpha)+S_\alpha
\]

\(f_\alpha\): distribution function of α particles
\(v_{\parallel}\): velocity parallel to magnetic field line
\(v_D\): drift velocity
\(C^{\text{coll}}\): Coulomb collision operator (linear and nonlinear)
\(L^{\text{particle}}\): particle loss term (LCFS)
\(S_\alpha\): particle source generated by fusion reaction

The steady state distribution of α particle is evaluated. The GNET code uses a Monte Carlo technique to calculate the distribution function of a set of test particles.

α particle source (\(S_\alpha\))

Fusion reaction rate

\[S_\alpha = n_D n_T \left(\int f_D v_D f_T v_T \sigma(E) dv_D dv_T \right) v_D - v_T \]

\(\sigma\): total reaction cross-section
\(E\): relative energy
\(n_D\): radial profile of plasma density
\(n_T\): plasma temperature

\(\rho\): normalized minor radius
\(\theta\): the value at the magnetic axis
\(l\): the value at the last closed flux surface (LCFS)

Based on the fusion reaction rate, we get an initial radial profile of α particles.

The nonlinear collision operator : \(C^{\alpha/b}_{\text{nonlinear}}\)

We can write the \(C^{\alpha/b}_{\text{nonlinear}}\) with Rosenbluth potentials[6],

\[
C^{\alpha/b}_{\text{nonlinear}} = -\frac{\sigma_{\alpha/b}}{4\pi} \nabla \cdot \nabla \phi_{\alpha/b}(\mathbf{v})
\]

\[
D = -\frac{\mu_b}{4\pi} m_a \nabla \phi_b(\mathbf{v})
\]

\[
F = -\frac{\mu_b}{4\pi} \frac{n_b}{n_a} m_a \nabla \phi_b(\mathbf{v})
\]

\[
\Gamma_{\alpha/b} = \frac{n_b q_a q_b^2 \ln \Lambda_{\alpha/b}}{4\pi \varepsilon_0 m_a^2}
\]

\(D\): diffusion tensor
\(F\): average force tensor
\(n\): density of plasma
\(m\): mass of particle species
\(\varepsilon_0\): electrical constant
\(a\): test particle species
\(b\): background particle species

† Rosenbluth potentials \(\phi, \psi\)

\[
\phi_a(v, \theta) = \sum_{l=0}^{\infty} \sum_{b=0}^{a} \frac{n_a + n_b}{m_b} \phi_a^{(l)}(v) P_l(\cos \theta)
\]

\[
\psi_a(v, \theta) = \sum_{l=0}^{\infty} \sum_{b=0}^{a} \psi_a^{(l)}(v) P_l(\cos \theta)
\]

\[
\phi_a^{(l)}(v) = \frac{1}{2l+1} \left[\int v^{2l+1} f_a^{(l)}(v') dv' + \int v^{2l+1} f_a^{(l)}(v') dv' \right]
\]

\[
\psi_a^{(l)}(v) = \frac{1}{2(l+1)^2 - 1} \left[\int v^{2l+2} f_a^{(l)}(v') dv' + \int v^{2l+2} f_a^{(l)}(v') dv' \right]
\]

† Legendre Polynomial Expansion

\[
f_a(v, \theta) = \sum_{l=0}^{\infty} f_a^{(l)}(v) P_l(\cos \theta)
\]

\[
f_a^{(l)}(v) = \frac{1}{2l+1} \int f_a(v, \theta) P_l(\cos \theta) \sin \theta d\theta
\]

\(P_l(\mu) = 1\)

\((1+1)P_{l+1}(\mu) = (2l+1)\mu P_l(\mu) - lP_{l-1}(\mu)\)

Introduction

Helical device

† The magnetic field is generated mainly by the coil current.

Permits a steady state plasma.

† No plasma disruption caused by the plasma current.

† The magnetic configuration is inherently three-dimensional (3D).

† The plasma behavior is more complex than in tokamaks.

† Several physics and technical problems remain to be studied and solved, such as the behavior and confinement of high energy α particles in helical plasma.

α particle in helical plasma

† Helical trapped particles: trapped in the helical ripple

† Toroidal trapped particles: trapped in the toroidal ripple

† Passing particles: not trapped in either the helical or toroidal ripples

† Transition particles: transition between trapped particles and passing particles

These trapped motions cause complex orbits of trapped particles and enhance radial diffusion of energetic particles.
Nonlinear collision effect

- The relative velocity between high-energy particles sometimes becomes very small.
- Although the amount of high-energy particles are much less than thermal ions, it is considered that the nonlinear collision by each fast ion has usually larger effect than that by other background ions [1].
- This collision effect may lead to deteriorate the high-energy particle confinement, because of increasing a pitch angle scattering.

Collision frequency

We compare with the beam-beam collision frequency and the beam-other species collision frequency.

<table>
<thead>
<tr>
<th>Energy</th>
<th>Collision frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_e kV</td>
<td>n_i 1.0 x 10^{20} m^{-3}</td>
</tr>
<tr>
<td>T_i kV</td>
<td>n_i 2.0 x 10^{20} m^{-3}</td>
</tr>
<tr>
<td>NBI(1MW/m^2 200keV)</td>
<td>n_i 1.0 x 10^{20} m^{-3}</td>
</tr>
</tbody>
</table>

Objective

- Assuming LHD type reactor as a typical helical reactor, we investigate the helical fusion reactor in a view point of the \(\alpha \)-particle confinement.
- We include the collisional effects (the energy and pitch angle scattering) and evaluated the distribution function of \(\alpha \)-particles.
- We analyze including the both complicated orbit and nonlinear collision effects in order to make clear the \(\alpha \)-particle confinement in heliotorons.
- The assumed fusion reactor
 - The helical type of fusion reactor extending the LHD magnetic configuration. (R_{ax} is about 3.55 times larger than that of the LHD.)
 - Plasma volume : 1000 m^3
 - Magnetic field : 5T
 - Magnetic configuration (R_{ax} : the magnetic axis position in vacuum): NC, which is the neoclassical transport optimized configuration, based on R_{ax}=3.53m of LHD [3].

Coulomb collision (C^{coll}(f))

\(C \) is the Coulomb collision operator including the linear collision effect \(C^{linear} \) and the nonlinear collision effect \(C^{nonlinear} \).

\[
C^{coll}(f) = C^{linear}(f) + C^{nonlinear}(f)
\]

The linear collision operator : \(C^{linear} \)

The operator of the pitch angle and energy scattering with background ions and electrons [5].

Pitch angle :

\[
\lambda_n = \lambda_{n-1} - \sum_i \left(\frac{\nu_d r^2}{2} \left[1 - \lambda^2_{n-1} \right] \nu^2 r^2 \right)^{1/2}
\]

Energy :

\[
E_n = E_{n-1} - \sum_i \left(\frac{2 \nu_d r^2}{2} \left[F_{n-1} \left(\frac{3}{2} + \frac{E_{n-1}}{2} \frac{d\nu^2}{dE_{n-1}} \right) \right] \right)
\]

Objective

- We include the collisional effects (the energy and pitch angle scattering) and evaluated the distribution function of \(\alpha \)-particles.
- We analyze including the both complicated orbit and nonlinear collision effects in order to make clear the \(\alpha \)-particle confinement in heliotorons.
- The assumed fusion reactor
 - The helical type of fusion reactor extending the LHD magnetic configuration. (R_{ax} is about 3.55 times larger than that of the LHD.)
 - Plasma volume : 1000 m^3
 - Magnetic field : 5T
 - Magnetic configuration (R_{ax} : the magnetic axis position in vacuum): NC, which is the neoclassical transport optimized configuration, based on R_{ax}=3.53m of LHD [3].

We improve the GNET code to take into account the nonlinear collision effect on the \(\alpha \)-particle confinement.
- We have extended the linear collision operator to estimate the effect of multi species plasma (deuterium, tritium, and alpha particle).
- We have studied the nonlinear collision operator and obtained its diffusion equation.
- The code is still need improvements.

Reference

Acknowledgments

The authors were grateful for the support of the Ministry of Education, Culture, Sports, Science, and Technology of Japan via “Energy Science in the Age of Global Warming” of Global Center of Excellence (G-COE) program (J-051).

Summary

We will benchmark the nonlinear collision operator using the same background distributions.