Analytical and Numerical Studies on Acceleration Phase of Collisionless Magnetic Reconnection

M. Hirota1

in collaboration with P. J. Morrison2, Y. Ishii1, M. Yagi1, N. Aiba1

1Japan Atomic Energy Agency

2University of Texas at Austin

17th NEXT Workshop
March 15-16, 2012 @ Univ. of Tokyo, Kashiwa Campus
Introduction

- Magnetic reconnection is triggered by dissipation/microscopic effects.
 (singular perturbations of ideal MHD)

- If plasma is either collisionless ($R_m \sim 10^{9-13}$) or close to the ideal MHD stability limit ($\Delta' \sim \infty$), the resistive MHD theory cannot explain the observed reconnection speeds. ⇒ collisionless magnetic reconnection

Numerical simulations show acceleration of collisionless reconnection in nonlinear phase

- However, conventional methods (such as asymptotic matching and perturbation expansion) have difficulty in analysing the nonlinear evolution.

- We take a new theoretical approach based on variational principle in order to clarify the acceleration mechanism. Our analytical prediction is also verified by using a direct numerical simulation.
Triggers of reconnection in two-fluid model

Faraday’s law
$\partial_t B = -\nabla \times E$

$E = -\mathbf{v} \times \mathbf{B} + \frac{d_i}{n} (\mathbf{j} \times \mathbf{B} - \nabla p_e) + \frac{d_e^2}{n} \frac{d\mathbf{j}}{dt} + \eta \mathbf{j} - \eta_2 \nabla^2 \mathbf{j}$

\mathbf{v}: ion velocity, n: number density, \mathbf{j}: current, p_e: electron pressure

(1). Hall effect: $d_i = \text{(ion skin depth)}/L$
$\partial_t B = \nabla \times (v_e \times \mathbf{B})$ where $v_e = \mathbf{v} - d_i j/n$ \quad \cdots \text{no reconnection, by itself}

(2). Electron inertia: $d_e = \text{(electron skin depth)}/L$ \quad \cdots \text{collisionless reconnection}

(3). Resistivity: η \quad \cdots \text{collisional reconnection}

Ref. Rutherford theory (linear phase $\propto e^{\gamma t}$ \Rightarrow nonlinear phase $\propto t$)

(4). Electron viscosity: η_2 \quad \cdots \text{collisional reconnection}

In large tokamaks, \quad \boxed{1 \gg 2 \gtrapprox 3 \gg 4}

We will focus on electron inertia (2) and study nonlinear acceleration mechanism of collisionless reconnection.
Analytical model of this work

2D MHD model with electron inertia

For \(\mathbf{v} = \nabla \phi(x, y, t) \times \mathbf{e}_z \) and \(\mathbf{B} = \nabla \psi(x, y, t) \times \mathbf{e}_z \),

Vorticity equation:

\[
\frac{\partial \nabla^2 \phi}{\partial t} - [\phi, \nabla^2 \phi] - [\nabla^2 \psi, \psi] = 0,
\]

(1)

(Collisionless) Ohm’s law:

\[
\frac{\partial (\psi - d_e^2 \nabla^2 \psi)}{\partial t} - [\phi, \psi - d_e^2 \nabla^2 \psi] = 0,
\]

(2)

where \(d_e (\ll L) \): electron skin depth, and \([f, g] = \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial g}{\partial x} \frac{\partial f}{\partial y}\).

This is known as a Hamiltonian system. (no dissipation)

- Hamiltonian: \(H = \frac{1}{2} \int d^2 x \left[|\nabla \phi|^2 + |\nabla \psi|^2 + d_e^2 (\nabla^2 \psi)^2 \right] \)

- Ohm’s law (2) \(\Leftrightarrow \partial_t \psi_e + \mathbf{v} \cdot \nabla \psi_e = 0 \)

Instead of magnetic flux \(\psi \), electron’s canonical momentum \(\psi_e = \psi - d_e^2 \nabla^2 \psi \) is the frozen-in flux.

\(\Rightarrow \) Reconnection is possible without any dissipation mechanism.
We consider

1D equilibrium (periodic in both x and y directions)

$$\phi \equiv 0 \text{ (no flow)}, \quad \psi(x) = \cos \frac{2\pi x}{L_x} \quad \text{on } \left[-\frac{L_x}{2}, \frac{L_x}{2}\right]$$

- Collisionless magnetic reconnection spontaneously occurs at resonant surfaces $x = 0, \pm L_x/2$.
- For sufficiently small wavenumber k in the y direction, this instability ($\Delta' \sim \infty$) is similar to the $m = 1$ kink-tearing mode in tokamaks.

The reconnection process mainly leads to the following energy conversion:

$$\frac{1}{2} \int |\nabla \psi|^2 d^2x \quad \text{Relaxation} \quad \frac{1}{2} \int |\nabla \phi|^2 d^2x \quad \text{and} \quad \frac{1}{2} \int d_e^2 J^2 d^2x \quad (J = -\nabla^2 \psi)$$
Direct numerical simulation

[Finite difference method in x direction ($\sim 10,000$ grids), Spectral method in y direction (~ 100 modes)]

Define ϵ as maximum displacement in x direction (\approx half width of magnetic island).

Snapshots of contours when $\epsilon = 4.2d_e$ ($d_e/L_x = 0.01$, $k = 0.5/L_x$)

\[\frac{\epsilon}{d_e} \text{ indeed accelerates when it exceeds the electron skin depth } d_e. \]

[Ottaviani and Porceli, PRL (1993)]
Construction of variational principle

♦ Perturbations, \((0, \psi_e) \rightarrow (\tilde{\phi}, \tilde{\psi}_e)\), that preserve the flux \(\psi_e\) can be generated by a function \(G(x, y, t)\) such that

\[
\begin{align*}
\tilde{\phi}(x + \partial_y G(x, y, t), y, t) &= \partial_t G(x, y, t), \\
\tilde{\psi}_e(x + \partial_y G(x, y, t), y, t) &= \psi_e(x)
\end{align*}
\]

\[\Rightarrow \text{Ohm's law } (2) \text{ is solved! (which is built-in as a constraint on } \tilde{\phi} \text{ and } \tilde{\psi}_e)\]

♦ Lagrangian: \(L[G] = \frac{1}{2} \int \left(|\nabla \tilde{\phi}|^2 - |\nabla \tilde{\psi}|^2 - d_e^2 |\nabla^2 \tilde{\psi}|^2 \right) d^2x = K - W\)

This play a role of potential energy

Variational principle: \(\delta \int L[G]dt = 0 \text{ w.r.t. } \forall \delta G \Rightarrow \text{Vorticity eq. } (1)\)

If the potential energy decreases \((\delta W < 0)\) for some function \(G\), then such a perturbation will grow with the release of free energy.

(The MHD energy principle is extended to two-fluid model.)
Linear stability analysis ($\epsilon \ll d_e$)

Small-amplitude expansion ($|G| \sim \epsilon \ll d_e$) around equilibrium state

\[
L(\tilde{\phi}, \tilde{\psi}_e) = L(\psi_e) + L^{(1)}(\psi_e; G) + \frac{1}{2} L^{(2)}(\psi_e; G, G) + \frac{1}{6} L^{(3)}(\psi_e; G, G, G) + \ldots
\]

0 at equilibrium

- The 2nd-order Lagrangian $L^{(2)}$ governs the linearized dynamics.

⇒ By putting $G(x, y, t) = \epsilon(t) \hat{x}(x) \frac{\sin ky}{k}$ with $\epsilon(t) \propto e^{\gamma t}$, we obtain

Eigenvalue problem (4th order ODE)

\[
- \left\{ \left[\left(\gamma/k \right)^2 + (\psi_e')^2 \right] \hat{x}' \right\}' + k^2 \left[\left(\gamma/k \right)^2 + (\psi_e')^2 \right] \hat{x} = d_e^2 \psi_e' J''' \hat{x} + \psi_e' d_e^2 \nabla^2 (1 - d_e^2 \nabla^2)^{-1} \nabla^2 (\psi_e' \hat{x})
\]

(the prime ' denotes x derivative.)

- Around marginal stability $\gamma \sim 0$, the boundary layers exist at positions where $\psi_e' = 0$.

For $\gamma \neq 0$ and $d_e \neq 0$, the eigenfunctions \hat{x} must be regular.

(The MHD singularity is removed by the electron inertia.)
Energy principle for linear stability

\[-\gamma^2 \delta I = \delta W \] (≡ Eigenvalue problem)

\[\delta I = \int \, dx \frac{1}{k^2} \left(|\hat{\xi}'|^2 + k^2 |\hat{\xi}|^2 \right) > 0\]

\[\delta W = \int \, dx \left[|\nabla (\psi' \hat{\xi})|^2 + \psi' \psi''' |\hat{\xi}|^2 - \nabla^2 (\psi' \hat{\xi}^*) d_e^2 (1 - d_e^2 \nabla^2)^{-1} \nabla^2 (\psi' \hat{\xi}) \right]\]

> 0 \quad < 0 \quad < 0

(i) magnetic field tension (ii) magnetic shear (iii) electron inertia

• (i)+(ii) > 0 \quad \Rightarrow \quad \text{Stable } \delta W > 0 \text{ in the MHD limit } d_e = 0

• (i)+(iii) > 0 \quad \Rightarrow \quad \text{Stable } \delta W > 0 \text{ without the magnetic shear (or current)}

 (The effect of electron inertia weakens the magnetic field tension only in the small scale } \sim d_e)
Test function that makes δW negative

- Let us choose the following piecewise-linear function.

\[
\xi(x) = \begin{cases}
1 & -L_x/2 \leq x < 0 \\
0 & 0 \leq x < 2d_e \\
-0.5 & 2d_e \leq x \leq L_x/2
\end{cases}
\]

\[
\phi(x, y, t) = \epsilon(t) \xi(x) \sin ky
\]

- Then, the 2nd-order Lagrangian is reduced to

\[
L^{(2)}(\dot{\epsilon}) \simeq \frac{2\pi}{k} B'_y d_e^3 \left[\left(\frac{d\dot{\epsilon}}{dt} \right)^2 - U(\dot{\epsilon}) \right]
\]

where

\[
\begin{align*}
\dot{\epsilon} &= \epsilon/d_e, & \dot{t} &= t/\tau_e, \\
\tau_e^{-1} &= d_e k B'_y
\end{align*}
\]

Potential energy: $U(\dot{\epsilon}) = -\frac{1+27\epsilon^{-2}}{6} \dot{\epsilon}^2 = -0.776 \dot{\epsilon}^2$

\[
\Rightarrow \text{Linear growth rate: } \gamma = \sqrt{0.776/\tau_e} = 0.881/\tau_e
\]

This agrees with the results of conventional asymptotic matching method as well as our numerical simulation.
Nonlinear stability analysis \((\epsilon > d_e)\)

Remark: Failure of perturbation analysis

Let us try to continue the perturbation expansion of Lagrangian.

Nonlinear perturbations

\[
\tilde{\phi}(x + \partial_y G(x, y, t), y, t) = \partial_t G(x, y, t), \\
\tilde{\psi}_e(x + \partial_y G(x, y, t), y, t) = \psi_e(x)
\]

\[
\Rightarrow \\
\tilde{\phi} = G_t - G_y G_t' + \frac{1}{2} (G_y^2 G_t')' - \frac{1}{6} (G_y^3 G_t')'' + \frac{1}{24} (G_y^4 G_t')''' + O(\epsilon^6), \\
\tilde{\psi}_e = \psi_e - G_y \psi_e' + \frac{1}{2} (G_y^2 \psi_e')' - \frac{1}{6} (G_y^3 \psi_e')'' + \frac{1}{24} (G_y^4 \psi_e')''' + O(\epsilon^5),
\]

where \(G_t = \partial_t G, G_y = \partial_y G\).

However, the linearly unstable mode has a steep gradient, \(G' \sim G/d_e\).

\(\Rightarrow\) The above expansion fails to converge when \(\epsilon = \max |G_y| \to d_e\).

(In fact, we will find that \(\epsilon\) easily exceeds \(d_e\).)

For \(\epsilon > d_e\), full-nonlinear analysis is required around the inner layers.
Potential energy change “around the X-point”

We have directly imposed a nonlinear displacement $\epsilon > d_e$ and investigated subsequent potential energy change.

Around the X point, decrease of potential energy is found to be steeper than that in the linear regime

- Around the X point, ψ_e is compressed by the inflow.
- By this convection, outer region loses magnetic energy of $O(\epsilon^3)$, but inner layer gains magnetic and current energy, at most, of $O(\epsilon^2)$. \Rightarrow Potential decreases in ϵ^3

(When $\epsilon = 5d_e$)

$$
\int d^2_e J_2^2 \, dx = O(\epsilon^2) \\
\int B^2(0) \, dx = \frac{(d_e + \epsilon)^3}{2} + O(\epsilon^2)
$$
Potential energy change in entire domain

As a whole, “smoothness” of the test function is found to be essential for steep decrease of potential energy.

- When the flux ψ_e turns back from the O point side by convection, the potential does not further decrease.
- When the X point elongates and approaches to the “Y-shape”, the potential decreases in cubic power of $\hat{\epsilon}$.
Verification using direct numerical simulation

We calculate the potential energy $U(\hat{\epsilon})$ in the direct numerical simulation.

- Simulation almost agrees with the test function 2 up to $\epsilon < 7d_e$.
- In simulation, flow pattern ϕ tends to smooth gradually in time.
 \Rightarrow The Y-shape seems to be self-organized, searching for the lowest U state.
- The nonlinear acceleration force $F(\hat{\epsilon}) = -U'(\hat{\epsilon}) \sim \hat{\epsilon}^2$ is different from $F(\hat{\epsilon}) \sim \hat{\epsilon}^4$ in Ottaviani & Porceli (1993), but simulation agrees with our scaling.
Summary

- We have performed nonlinear analysis and simulation of magnetic reconnection driven by electron inertia, to clarify its acceleration mechanism.

- By formulating variational principle (Lagrangian) of a two-fluid model, growth of magnetic island can be predicted by finding a test function that minimizes potential energy of the system.

 - In linear phase \((\epsilon \ll d_e)\), the exponential growth rate \(\epsilon(t) \propto e^{\gamma t}\) is estimated by using a piecewise-linear function that is similar to the eigenfunction. \[\text{Potential } U(\hat{e}^2) = -0.776\hat{e}^2 + O(\hat{e}^3)\]

 - In nonlinear phase \((d_e < \epsilon \ll L_x)\), a smooth test function predicts decrease of potential energy \(U \sim -\hat{e}^3\) which is steeper than the linear phase.

 \[\Rightarrow \text{Explosive growth of island } (\epsilon) \text{ during a finite time } \sim \tau_e = (d_e q' \omega A_0)^{-1}\]

 Although the model is too simple at present, this time scale (for large tokamaks, \(\tau_e \sim 100\mu s\)) does not contradict the experimental collapse times.

- By taking a form of Y-shape, most part of magnetic energy flowing into the inner layer is converted into kinetic energy.