Design of Superconducting Coil System
for remodeling JT-60 (JT-60SC)

T. Ando, S. Ishida, T. Kato, M. Kikuchi, K. Kizu, M. Matsukawa,
Y. Miura, H. Nakajima, A. Sakasai, and K. Tsuchiya

JAERI

Contents

1. Purpose of JT-60SC and Outline of its Superconding Coil Design
2. Nb$_3$Al Conductor Development for TF Coil
3. AC Loss Reduction Technique for Conductor of Cetral Solenoid
4. Joint Design
5. Conclusion
Configuration of JT - 60SC Coil System

Main parameters of the TF coil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Height / Width</td>
<td>6.0 m / 3.7 m</td>
</tr>
<tr>
<td>Number of Coils</td>
<td>18</td>
</tr>
<tr>
<td>Max. Magnetic Field</td>
<td>7.4 T</td>
</tr>
<tr>
<td>Total Stored Energy</td>
<td>1.7 GJ</td>
</tr>
<tr>
<td>Centering Force per Coil</td>
<td>33.6 MN</td>
</tr>
<tr>
<td>Weight per Coil</td>
<td>23.5 ton</td>
</tr>
</tbody>
</table>

Main parameters of the CS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height of Winding</td>
<td>5.4 m</td>
</tr>
<tr>
<td>Inner Diameter of Winding</td>
<td>1.6 m</td>
</tr>
<tr>
<td>Outer Diameter of Winding</td>
<td>2.1 m</td>
</tr>
<tr>
<td>Number of Coils</td>
<td>4</td>
</tr>
<tr>
<td>Max. Magnetic Field</td>
<td>7.4 T</td>
</tr>
</tbody>
</table>

Main parameters of the EF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Coils</td>
<td>6</td>
</tr>
<tr>
<td>Max. Diameter of Winding</td>
<td>10.6 m</td>
</tr>
<tr>
<td>Max. Magnetic Field</td>
<td>5 T</td>
</tr>
</tbody>
</table>

Total weight: 2000 tons
Winding Configuration of TF coil and CS

TF coil

Central Solenoid

7DP
154 turns

23DP
414 turns
Selection of Superconductor for TF Coil

NbTi, Nb$_3$Sn and Nb$_3$Al strands compared in Jc performance with stainless steel conduit.

$B=7.4T$ $\varepsilon=\pm 0.7\%$

- Nb$_3$Sn: 650A/mm2 at 4.2 K, 12 T, 0.25% strain
- Nb$_3$Al: 600A/mm2 at 4.2 K, 12 T, 0% strain
Development of Nb$_3$Al conductor (II)

30m length full size conductor fabrication

- Cable fabrication: use of a 11 km Nb$_3$Al strand and a capper wire
 - Pattern: $3 \times 3 \times 3 \times 3 \times 4 = 324$
 - Final stage twist pitch = 350 mm

- Conduit fabrication
 - Material: 316 LN
 - Shape: Square conduit with a circular hole
 - Unit length: 10m (Hot extrusion and cold work)
 - 30 m conduit: 2 butt weldings with 3 unit conduits

- Conductor fabrication
 - Cable was inserted into the 30 m length conduit and then it was drawn down to the nominal size

A 30 m Nb$_3$Al full size conductor was completed
AC Loss Reduction Technique for the conductor of CS (I)

Conductor for CS and EF 4 coil requires low coupling loss of 50 ms level.

Dependence of coil operation frequency on coupling loss was measured in ITER - CSMC test.

To break the sintering at room temperature, the application of bending strain to a full size conductor sample was tried and ac loss was measured.

This shows that the sintering between strands is broken by electro-magnetic force during coil operation and ac loss is decreased because the resistance between strands is inc eased.
Joint Structure

Operation Condition

- Max. Transport Current : 20 kA
- Max. Magnetic Field : 4.8 T
- Max. Changing Field Rate : 2.0 T/s
- Operating life : 10 years
- Fatigue life : 18000 times

Requirements

- Resistance : < 7nΩ
- Time constant of coupling current : < 1s
- Temperature margin : < 1K

To realize these high endurance and low ac loss the following joint structure is designed.

Design

- Lap type
- Use of Ag brazing for contact between cable and Cu pipe
- Cable void fraction of 25 %
The Need of JT-60 remodeling with superconducting coil

Investigation of plasma performance in the region beyond the diffusion time of plasma current at the break-even level.

Long Pulse Operation

Use of Superconducting Coil

PRINCIPAL PARAMETERS OF JT-60SC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma Current</td>
<td>4 MA</td>
</tr>
<tr>
<td>Flat Top Plasma Current</td>
<td>100 s</td>
</tr>
<tr>
<td>Plasma Major Radius</td>
<td>2.8 m</td>
</tr>
<tr>
<td>Plasma Minor Radius (maximum)</td>
<td>0.8 m</td>
</tr>
<tr>
<td>Plasma Elongation</td>
<td>1.8</td>
</tr>
<tr>
<td>Triangularity</td>
<td>0.35</td>
</tr>
<tr>
<td>Divertor Configuration</td>
<td>Single Null</td>
</tr>
<tr>
<td>Toroidal Field at the Major Radius</td>
<td>3.8 T</td>
</tr>
</tbody>
</table>
Size of the JT-60SC Superconducting Coil

TF Coil
(Steady operation)

CS and EF Coil
(Pulsed operation)

Magnet Stored Energy (GJ)

Maximum Magnetic Field (T)

0.1

1

10

100

0.4

1

10

BS (T·m²)

0.4

0.2

0.4

1

2

4

10

20

40

ITER-TF

JT60SC-TF

LHD-II

Tore-supra

CSMC

LCT

CSMC

CSI

DPC-EX

JT-60SC-CS

US-DPC

pulser C

(JAERI)

B : Peak field
S : Inner dia. area

1.5 kJ coil

(ANL)

Operated

Constructing, design

Trium-1M

MFTF

LHD-I

TMC

ATLAS

Operated

Design

M010911d_T.A
Conductors for TF coil, CS and EF coil

<table>
<thead>
<tr>
<th>Structure</th>
<th>316 LN</th>
<th>Superconducting Strand</th>
<th>Pure copper wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al (or Nb)</td>
<td>324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.74 mm</td>
<td>36 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.78 mm</td>
<td>36 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NbTi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70 mm</td>
<td>36 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Max. Magnetic Field	7.4 T	7.4 T	5 T
Nominal Current	19.4 kA	20 kA	20 kA
Operating Temp			
SC Material	316 LN	316 LN	316 LN
Coating Material			
No. of Total Strands			
No. of SC Strands			
No. of Cu Wires			
Cu/non Cu Ratio			
Strand Diameter			
Void Fraction			
Weight of SC strand			

M010903a_T.A
Development of Nb$_3$Al conductor (I)

Nb$_3$Al strand development

- Strand diameter: 0.74 mm
- Cu non Cu ratio: 4
- Filamentary diameter: 55 μm
- J_c at 12 T and 4.2 K: 600 A/mm2
- n value: 45

High quality jelly - roll preparation

A Nb$_3$Al strand of 11 km length was successfully fabricated with no breakage
Using the 30 m length full size Nb$_3$Al conductor the following R &Ds are planned:

1. A two turns coil is fabricated and tested
 - Verification test of React and Wind technique
 Application of same strain as a real TF coil conductor to a two turns coil conductor

2. Short Sample test
 - Conductor performance measurement
 \(I_c - B - T \)
 AC loss
 - Joint performance measurement
 \(I_c - B - T \)
 Joule loss
 AC loss
AC Loss Reduction Technique for conductor of CS (II)

Method to apply 0.2% strain to the conductors of CS.

\[\varepsilon_t = \frac{W \cdot d}{\pi D^2} \]

0.2% strain is applied to conductors due to expanding the space between the pancakes after heat treatment of the double pancakes. At that time, turn insulation work is carried out.

0.2% strain is within the region of elastic on the stress-strain curve of a CIC conductor.

![Stress-Strain Curve](Specking_FZK.png)
The Design of JT-60 remodeling with a superconducting system has been carried out with new technologies to perform the extensive plasma experiment. The features of this system are as follows:

1. The TF coil has a magnetic stored energy of 1.7 GJ that is the largest in superconducting coil constructed so far.

2. High copper ratio strands (4 for Nb$_3$Al and 2.3 for Nb$_3$Sn) were developed to realize high current density in winding and coil fabrication with low cost.

3. A Nb$_3$Al cable-in-conduit conductor with s.s.conduit is considered to be applied to the TF coil, which enable it to make with a react-and-winding technique.

4. In order to decrease inter strand coupling loss in CS conductor, a bending strain technique was considered.

5. Joints between pancakes use brazing between cable and copper tube to get strongly mechanical contact.