This annual report provides an overview of major results and progress on research and development (R&D) activities at Naka Fusion Research Establishment of Japan Atomic Energy Research Institute (JAERI) during the period from April 1 to September 30, 2005 and at Fusion Research and Development Directorate of Japan Atomic Energy Agency (JAEA) from October 1, 2005 to March 31, 2006, including those performed in collaboration with other research establishments of JAERI, research institutes, and universities.

In JT-60, ferritic steel tiles (FSTs) were installed inside the vacuum vessel of JT-60U to reduce the toroidal field ripple. After the installation of FSTs, a high normalized beta plasma at $\beta_N \approx 2.3$ was sustained for 28.6s with ELMy H-mode confinement as required for an ITER hybrid operation scenario. National Centralized Tokamak was placed as the ITER satellite tokamak in collaboration with the EU fusion community, and the facility design was modified strongly in support of ITER.

In theoretical and analytical researches, studies on H-mode confinement, ITB in reversed shear plasmas, aspect ratio effects on external MHD modes and magnetic island evolution in a rotating plasma were progressed. Progress was also made in the NEXT project in which the behaviors of collisionless MHD modes and the dynamics of zonal flows were simulated.

In fusion reactor technologies, R&Ds for ITER and fusion DEMO plants have been carried out. For ITER, a steady state operation of the 170GHz gyrotron up to 1000 s with 0.2MW was demonstrated. Also current density of the neutral beam injector has been extended to 134A/m2 at 0.75MeV. In the ITER Test Blanket Module (TBM), designs of Water and Helium Cooled Solid Breeder TBMs and R&Ds of tritium breeder/multiplier materials were progressed. Tritium processing technology for breeding blankets was also progressed. For the DEMO reactors, high temperature superconductor such as Bi2212 has been examined. In plasma facing components, critical heat flux of a screw tube has been examined. Neutronics integral experiments with a blanket mockup were also progressed. For ITER TBMs and DEMO blankets, irradiation effects on F82H characteristics were progressed using HFIR, JMTR and so on. In the IFMIF program, transitional activities were also progressed. Vacuum technology and its application to industries have been examined.

In the ITER Program, under the framework of the ITER Transitional Arrangements, the Design and R&D Tasks have been carried out by the Participant Teams along the work plan approved on September 2005. In FY 2005, JAERI/JAEA has performed sixty-six Design Tasks and has completed thirty-four Tasks that make the implementation of preparing the procurement documents for facilities and equipments that are scheduled to be ordered at an early stage of ITER construction. The work plan for the “Broader Approach” Program has been continuously discussed through the bilateral negotiation meetings between Japan and the EU, and JAERI/JAEA provided the technical support for the meetings.

Finally, in fusion reactor design studies, a reactor concept of SlimCS was proposed to demonstrate an electric power generation of 1GW level, self-sufficiency of tritium fuel and year-long continuous operation.

Keywords: JAERI, JAEA, Fusion Research, Fusion Technology, JT-60, ITER, Broader Approach, IFMIF, Fusion Power, DEMO Plant, Fusion Reactor
I. JT-60 Program
 1. Experimental Results and Analyses
 1.1 Insertion of the Ferritic Steel Tile and Extended Plasma Regimes
 1.2 Heat, Particle and Rotation Transport
 1.3 MHD Instabilities and Control
 1.4 H-Mode and Pedestal Research
 1.5 Divertor/SOL Plasmas and Plasma-Wall Interaction
 2. Operation and Machine Improvements
 2.1 Tokamak Machine
 2.2 Control System
 2.3 Power Supply System
 2.4 Neutral Beam Injection System
 2.5 Radio-Frequency Heating System
 2.6 Diagnostics Systems
 3. Design Progress of the National Centralized Tokamak Facility
 3.1 Physics Estimation
 3.2 Engineering Design
 4. Domestic and International Collaborations
 4.1 Domestic Collaboration
 4.2 International Collaboration

II. Theory and Analysis
 1. Confinement and Transport
 1.1 Origin of the Various Beta Dependence of ELMy H-mode Confinement
 1.2 Internal Transport Barriers in JT-60U Reversed-Shear Plasmas
 2. MHD Stability
 2.1 Aspect Ratio Effect on the Stability of the External MHD Mode in Tokamaks
 2.2 Role of Anomalous Transport in Neoclassical Tearing Modes
 2.3 Magnetic Island Evolution in Rotating Plasma
 2.4 Mechanism of Rotational Stabilization of High-n Ballooning Modes
 3. Integrated Simulation
 3.1 Integrated Simulation Code for Burning Plasma Analysis
 3.2 Development of Integrated SOL/Divertor Code and Simulation Study
 3.3 Transient Behaviour of SOL-Divertor Plasmas after an ELM Crash
 4. Numerical Experiment of Tokamak (NEXT)
 4.1 Nonlinear Behaviors of Collisionless Double Tearing and Kink Modes
 4.2 Stability of Double Tearing Mode and its Effects on Current Hole Formation
 4.3 ZF/GAM Dynamics and Ion Turbulent Transport in Reversed Shear Tokamaks
 4.4 Development of Gyrokinetic Vlasov CIP Code
 5. Atomic and Molecular Data

III. Fusion Reactor Design Study
 1. Conceptual Design of DEMO Reactor
 2. Non-Inductive Current Ramp Simulation
 3. Study of Advanced Shield Materials

Appendix
 A.1 Publication List (April 2005 - March 2006)
 A.2 Organization
 A.3 Personnel Data
I. JT-60 PROGRAM
1. Experimental Results and Analyses
1.1 Insertion of the Ferritic Steel Tile and Extended Plasma Regimes

Modification of the control systems for the operation, heating and diagnostics has brought a new regime in the advanced tokamak plasma research with longer time scales than the current relaxation time (τ_R) on JT-60U. However, further pursuit of long sustainment of high performance plasmas has been prevented by the loss of fast ions due to the toroidal field ripple, since the loss decreases the net heating power, increases heat load to the wall and lower hybrid (LH) wave launcher located at a horizontal port, and limits controllability of the toroidal rotation (V_T) profile due to formation of an inward electric field. In order to reduce the toroidal field ripple, ferritic steel tiles (FSTs), which cover ~10% of the vacuum vessel surface, have been installed inside the JT-60U vacuum vessel on the low field side [1.1-1].

After the installation of FSTs, high normalized beta (β_N) of 2.3 is successfully maintained for 28.6 s with good confinement close to ITER hybrid operation scenario [1.1-2].

1.1.1 Ferritic Tile Insertion
Specifications of the FST is described in the section 2.1.2. Installation of the FSTs was optimized based on a typical large bore discharge ($I_p=1.1\text{MA}, B_t=1.86\text{T}$) in which the fast ion loss is larger using fully three Dimensional magnetic field orbit-following Monte-Carlo code (F3D OFMC) [1.1-1]. The final design is shown in Fig. I.1.1-1. With this design, the evaluation results show that total absorbed NB power can be increased by about 13%, and the increase in the absorbed power of the perpendicular beams can be 15%. Moreover, the heat load to the LH launcher can be reduced by a factor of ~3.

After the installation, the heat load to the outer wall was evaluated by the infrared camera, and found to be consistent with the calculation.

1.1.2 Sustainment of High β_N with High Confinement
The reduction of toroidal field ripple increases absorbed heating power at the same injection power. The increase in absorbed power can reduce the required NB units to sustain a given β_N and then increase flexibility of combination of tangential NB units to vary torque input. The reduction of fast ion losses can also reduce formation of an inward electric field, which may induce a counter toroidal rotation. All these factors can be expected to contribute in extending the sustainable

![Fig. I.1.1-1 Bird’s eye view of ferritic insertion. Thickness of the FST is 23mm](image)

![Fig. I.1.1-2 Waveforms of a typical high β_N long-pulse plasma (E45436), (a) plasma current and heating power, (b) normalized beta, β_N, and confinement factor, H_98, and (c) line-averaged density and divertor D_α intensity.](image)
duration of high β_N plasma. Therefore, optimization had been carried out, and high β_N of 2.3 was successfully sustained for 28.6s. The typical waveforms of the discharge ($I_p=0.9$MA, $B_T=1.58$T, $q_{95}=3.3$) are shown in Fig. I.1.1-2. Increase in the absorbed power and plasma confinement has enabled to sustain high β_N with smaller injection power. As the result, enough power to keep β_N is maintained until the end of the pulse. Smaller injection power also prevented increase in the temperature of the divertor tiles, which causes increase in the particle recycling. The increase in the particle recycling would degrade plasma confinement. In this discharge, the particle recycling is increasing (Fig. I.1.1-2 (c)), but limited low. It should be noted that in this discharge, a high bulk energy confinement ($H_{98(2)}$) of about 1.1 is maintained up to t~22s with $\beta_N \geq 2.4$ as shown in Fig. I.1.1-2. Also in this discharge high value of the product $\beta_N H_{98(2)}$, which is a measure of the fusion performance, is maintained above 2.2 for 23.1s ($\sim 12t_q$). It is noted that this value of $\beta_N H_{98(2)}$ can satisfy the ITER Hybrid scenario.

References

1.2 Heat, particle and rotation transport
1.2.1 Temporal Variation of Density Fluctuation and Transport in Reversed Shear Plasmas [1.2-1]
In reversed shear (RS) plasmas, an internal transport barrier (ITB) is formed due to suppression of anomalous turbulent transport. Many types of fluctuation with various spatial scales exist in plasmas. The anomalous turbulent heat transport for ion and electron channels and also the anomalous turbulent particle transport could be dominated by different types of fluctuation with different spatial scale such as ion temperature gradient (ITG) mode, trapped electron mode (TEM) and electron temperature gradient (ETG) mode. In a JT-60U RS plasma, further reduction of the transport was induced by a pellet injection after the ITB formation. The temporal variation of the density fluctuation and its relation to the electron and ion heat transport and the particle transport were investigated for the further reduction of the transport.

Figure I.1.2-1 shows wave-forms in a RS plasma with further reduction of the transport after the pellet injection. Pellets were injected into the RS plasma from the high-field-side at the top after the ITB formation. The plasma current (I_p) was 2.2MA, the toroidal magnetic field (B_T) was 4.3T, and the safety factor at 95% flux surface (q_{95}) was 3.8. The first pellet was injected at t=6.32s, as shown by the edge density jump, during the I_p flat-top phase with constant heating power of neutral beam (NB). After the first pellet injection, the central density and the stored energy started to increase. A high frequency component ($|f|>200$kHz) of the O-mode reflectometer signal was drastically reduced, as well as a low frequency component (50kHz>$|f|>20$ kHz), ~5ms after the pellet injection. In this case, the cut-off layer was located in the ITB region ($r/a=0.45-0.5$). The central density and the stored energy seemed to start to increase simultaneously with the reduction of the high and low frequency components. The reduction of the high and low frequency components of the O-mode reflectometer signal indicated change of density fluctuation level. The density fluctuation level was estimated to be 1-2% before and 0.4-0.5% after the first
pellet injection, respectively, [1.2-2] based on the analytical solution of time-dependent 2D full-wave equation [1.2-3]. The wave number of the measured density fluctuation was estimated to be of the order of 1cm⁻¹, which was consistent with the spatial scale of ITG and/or TEM. After another pellet injection at t=6.51s, the spectrum of the O-mode reflectometer signal was unchanged, and the central density and the stored energy continued to increase. The energy confinement time (τₑ) and the confinement enhanced factor over ITER-89P L-mode scaling (H₈₉₉₉) increased from τₑ=0.5s and H₈₉₉₉=1.6 at t=6.3s to τₑ=1.0s and H₈₉₉₉=2.6 at t=7s.

The density substantially increased inside the ITB foot, while the edge density slightly increased. The ion and electron temperature profiles did not change significantly. The profiles of the ion and electron thermal diffusivities (χᵢ and χₑ) and the effective particle diffusivity (Dₑ) estimated by the particle and power balance analysis without consideration of the pinch term (considering only the diffusion term) are shown in Fig. I.1.2-2. The values of χᵢ and Dₑ decreased by one order of magnitude after the pellet injection. However, no reduction of χₑ was observed. The equi-partition heat transfer from ions to electrons increased due to the substantial increase in the central density, but no change of difference between ion and electron temperature was observed. The ion temperature gradient in the ITB region was maintained with the decreased ion heat flux after the pellet injections due to χᵢ reduced to a neoclassical level. The increase in the electron stored energy (density increase with a constant electron temperature) was attributed to the increase in the equi-partition heat transfer from ions. The particle and power balance analysis indicated that the particle and ion heat transport are coupled with the measured density fluctuation with spatial scale of the order of 1cm⁻¹, while the electron heat transport was decoupled.

1.2.2 Degradation of Internal Transport Barrier by ELM Crashes [1.2-4]

In order to sustain burning plasmas in ITER and the steady-state tokamak power plants, we need to achieve high values of the energy confinement improvement factor (HHᵣₑ), normalized beta (βᵣ), bootstrap and non-inductively driven current fractions, plasma density, fuel purity and radiation power simultaneously. It is widely recognized that the high H-mode pedestal pressure and the ITB formation are important for achieving the above highly integrated plasma performance. However, high pedestal pressure may induce large ELMs. The compatibility of large ELMs with the ITB is an important issue to develop the highly integrated plasma. In JT-60U, the compatibility of type I ELMs and the ITB has been good enough to sustain a HHᵣₑ factor value of 1–2 in long pulse discharges of the high βᵣ H-mode (weak positive magnetic shear) and the RS H-mode [1.2-5]. Up to Iᵣ=1.5MA, the sustainable maximum plasma stored energy and βᵣ have been limited by the appearance of neoclassical tearing modes (NTM) for the positive shear cases (q₉₈=3.2–9 at Iᵣ=1 MA, q₉₈=4–5 at Iᵣ=1.5MA) [1.2-5]. However, at higher Iᵣ=1.8MA (q₉₈=4.1), we found some cases where the plasma stored energy was degraded by type I ELMs.

Figure I.1.2-3 shows the time evolution of the high βᵣ ELMy H-mode discharge E39713 (Iᵣ=1.8MA, Bₜ=4.05T, q₉₈=4.1), where a full non-inductively driven current drive was achieved [1.2-6]. The total plasma stored energy (Wₑ) reached 7.6MJ, which was the highest value achieved so far at Iᵣ=1.8MA in JT-60U. In the flat
The top phase of W_{dia}, the ITB-foot location was around 65% of the minor radius and the location of the top of the pedestal was around 90% of the minor radius. The central safety factor (measured by MSE) was 1.4 and thus there was no sawtooth activity. In Fig. I.1.2-3, a drop of W_{dia} was seen at $t \sim 6.5s$ to coincide with a drop in the line averaged density and an increase in the D$_\alpha$ emission from the divertor area. In this phase, no signature of an NTM was observed.

In order to evaluate the penetration of an ELM crash, we performed ECE measurement using the heterodyne radiometer system with a radial resolution of 2cm. The minor radius of this discharge was 79cm. Figure I.1.2-4 shows the measured profiles of the electron temperature (T_e) and the relative change in T_e at the ELM crashes ($=\Delta T_e/T_e$) at $t=5.35s$ and $t=6.49s$ in the discharge shown in Fig. I.1.2-3. In order to evaluate the ELM crash itself (the eigenfunction of the instability), $\Delta T_e/T_e$ was calculated within 600µs. We defined the ELM penetration radius by the deepest radial location with $\Delta T_e/T_e > 1\%$. At $t=5.35s$, the ELM crash depth was away from the ITB-foot, while at $t=6.49s$, it reached the ITB-foot.

In the early phase ($t<5.8s$) the ITB-foot radius expanded and the ELM penetration radius deepened gradually. This deepening of the ELM penetration seemed to coincide with an increase in pedestal stored energy (while the pedestal electron collisionality was almost constant). Then the ELM penetration radius and the ITB-foot met each other at $t=5.8s$. After that, the ‘balanced phase’ lasted for ~0.7s. Interestingly, the ITB-foot seemed to behave as a barrier against ELM crash penetration, and after around ten ELM attacks the ITB-foot shrank. Then the ELM penetration followed the shrinking ITB-foot. This behavior was shown in greater detail in T_e at various radial locations. Before $t=6.492s$, a sudden drop in T_e was seen up to $r/a=0.615$ (~ITB-foot), while no change in T_e at each ELM occurs inside the ITB. At $t=6.492s$, the ITB was broken at the original ITB-foot radius. Then degradation of T_e penetrated gradually into the inner region and, at the same time, T_e in the outer region increased and the ELM period shortened due to a release of the stored energy. As the result of this degradation of the ITB from $t=6.492s$ to $t=6.56s$, the stored energy decreased by about 10% (0.8MJ). ELM control for small amplitude such as type...
II ELM is important not only to reduce transient heat load to the divertor plates but also to achieve highly integrated plasma performance.

1.2.3 Response of Toroidal Rotation Velocity to Electron Cyclotron Wave Injection [1.2-7]

In tokamak plasmas, toroidal rotation velocity and its shear (or radial electric field (E_r) shear) play an important role in stability and transport. In present tokamak devices, the toroidal rotation velocity profile can be easily controlled by toroidal momentum input from NBs. In contrast, the control of toroidal rotation velocity profile by NBs will be difficult in a burning plasma. Therefore, the development of other actuators to control the toroidal rotation velocity profile is important for the control of a burning plasma. Recently, the change in toroidal rotation velocity profile induced by ICRF heating has been reported [1.2-8]. In JT-60U, the spontaneous toroidal rotation velocity under the no/low direct toroidal momentum input was investigated using electron cyclotron (EC) wave injection.

In order to investigate the response of the toroidal rotation velocity to on-axis EC wave injection, EC power of 2.7MW was injected into L-mode plasma (I_p=1MA, B_T=1.9T for the second harmonic EC central injection, q_95=3.4 and n_e~1.0x10^{19} m^{-3} at the centre). In this plasma, low power NBs were applied, which consisted of counter-NB (0.9MW) for the motional Stark effect (MSE) diagnostic and perpendicular-NB (2.3MW) for the CXRS diagnostic. Since the fundamental O-mode (or the second harmonic X-mode) with an oblique toroidal injection angle was launched from the low-field-side for the current drive in JT-60U, EC injection was not for the electron heating only but also for the current drive. Figure I.1.2-5 shows the profiles of the toroidal rotation velocity and electron temperature just before and during the EC wave injection. As EC wave was injected, the central electron temperature increased from 2 to 6keV. The ion temperature just outside the EC wave deposition profile. Although the change in toroidal rotation velocity at the core region coincided with the increase in electron temperature, the timescale of change in the toroidal rotation velocity was slower than that in the electron temperature. It should be mentioned that the change in toroidal rotation velocity at r/a=0.37 was delayed from that at r/a=0.25. This indicated that the change in the toroidal rotation velocity propagated from the centre to the peripheral.

In order to investigate the propagating response of the toroidal rotation velocity to EC wave injection (2MW), the short pulse (0.1s) off-axis EC wave injection into the L-mode plasma heated by diagnostics NBs (counter-NB: 0.76MW, perpendicular-NB: 2MW) was performed, as shown in Fig. I.1.2-6. Here, I_p, B_T and q_95 were 0.8MA, 2.1T and 5.1 for the second harmonic EC injection, the line averaged electron density was ~0.8x10^{19}m^{-3}. Figure I.1.2-6 shows response of the toroidal rotation velocity in the core region to the short pulse of the off-axis EC wave injection. The peak of the absorbed EC wave power deposition was located at r/a=0.7, and there was no EC power source in the region of r/a<0.5. The perturbation of the toroidal rotation velocity towards co-direction (or reduced counter-rotation) was observed.
clearly in the region of $r/a<0.5$ and it propagated from the half of the minor radius to the centre, as shown in Fig. I.1.2-6. On the other hand, the propagation of the perturbation of the toroidal rotation velocity in the opposite direction was not obvious in this discharge. The propagation of the heat pulse was also observed in the electron temperature. The propagation speed for the perturbation of the toroidal rotation velocity was much slower than that of electron temperature. This suggests that the toroidal rotation velocity was not simply determined by the local electron pressure gradient. The perturbation amplitude of the toroidal rotation velocity increased when the perturbation propagated, suggesting existence of an inward pinch in momentum transport. The turbulence driven theory predicted that the density and/or temperature gradient, as well as the velocity gradient, generate the momentum flux [1.2-9]. The investigation of the response of the toroidal rotation velocity to the EC wave injection is necessary with various plasma parameters to clarify the mechanisms determining the momentum transport.

References

1.3 MHD Instabilities and Control
1.3.1 Stabilization of the Neoclassical Tearing Mode
In a fusion reactor such as ITER, stationary sustainment of a high-beta and high confinement plasma is essential. From the viewpoint of MHD stability, suppression of neoclassical tearing modes (NTMs) is the most critical issue in optimizing the discharge scenario of the high-performance plasmas. In JT-60U, in addition to the experimental demonstration of NTM suppression, progress has been made in simulation of NTM evolution by extending the transport code TOPICS [1.3-1, 1.3-2].

(1) Simulation of Evolution of Magnetic Island
Evolution of magnetic island associated with an NTM is described by the modified Rutherford equation. The equation is composed of the effects of the equilibrium current profile, the bootstrap current, the toroidal geometry (Glasser-Greene-Johnson effect), the ion polarization current, and the EC-driven current. Since each term contains a coefficient which cannot be determined with high accuracy by theory alone, in JT-60U, the coefficients have been determined by comparing between TOPICS simulation and NTM experiments.

Temporal evolution of magnetic island width of an $m/n=3/2$ NTM evaluated with the TOPICS code is shown in Fig. I.1.3-1 (a). Here, m and n are the poloidal and toroidal mode numbers, respectively. In this simulation, equilibrium and pressure profile in an NTM experiment are used, and EC wave power P_{EC} of 2.6MW, which corresponds to 4-unit injection in JT-60U, is injected from $r=7.6s$. Other typical parameters are as follows: plasma current $I_p=1.5MA$, toroidal field $B_t=3.6T$, safety factor at 95% flux surface $q_{95}=3.9$, island width before EC wave injection $\delta(7.5s)=0.125$, full-width at half-maximum (FWHM) of ECCD profile $\delta_{EC}=0.12$, mode rational surface $\rho_p=0.4$ in the volume-averaged normalized minor radius ρ. If EC wave is deposited at the island center, the 3/2 NTM...
is completely stabilized in 1.3s at $t=8.8s$ (case A in Fig. I.1.3-1(a)). If the deposition location is misaligned by 0.01 in ρ, time for stabilization is prolonged (case B in Fig. I.1.3-1(a)). Figure I.1.3-1 (b) shows the island width at $t=10s$, $W(10s)$, for different deposition locations. As shown in this figure, stabilization effect by ECCD is significantly decreased with increasing the distance between ρ_s and ECCD location ρ_{EC}. Complete stabilization can be achieved within the misalignment of $|\rho_{EC} - \rho_s|/W(7.5s)\leq0.5$, that is, about a half of the island width. This suggests that precise adjustment of ECCD location is essential, as recognized in experiments in JT-60U. It is notable that island width increases when the deposition location is misaligned by about W. The simulation also shows that it is mainly attributed to a destabilization effect of the ECCD term due to the misaligned injection.

(2) Effect of ECCD Profile on Stabilization

In NTM stabilization, ECCD profile is important as well as injection power. The effect has been numerically evaluated by TOPICS simulation. Figure I.1.3-2 (a) shows the dependence of magnetic island width during ECCD on P_{EC} for different ECCD width. Here, W^* and δ_{EC}^* are the island width and FWHM of ECCD profile normalized by the island width before ECCD, respectively. It can be seen that the stabilization effect strongly depends on the width of ECCD profile. Since the maximum value of the ECCD profile decreases with increasing δ_{EC}^* at fixed EC power, both δ_{EC}^* and P_{EC} must be considered in evaluating the stabilization effect. In Fig. I.1.3-2 (b), W^* is plotted as a function of δ_{EC}^* and P_{EC}. In general, magnetic island associated with an NTM is spontaneously decays due to the polarization current effect when its width is decreased to a certain value. In JT-60U, complete stabilization can be achieved for $W^* \leq 0.3$. The TOPICS code simulation shows that the threshold for complete stabilization increases with $P_{EC}^{-0.6}$, which indicates that EC wave power required for complete stabilization can be significantly reduced by narrowing the ECCD width. In NTM experiments in JT-60U, EC-driven current density j_{EC} is comparable to the bootstrap current density j_{BS} at the mode rational surface. Since the ECCD profile is close to the Gaussian distribution function, the maximum current density linearly increases with decreasing the FWHM under a fixed injection power. This suggests that complete stabilization can be achieved even with $j_{EC}/j_{BS} < 1$ if narrow ECCD profile is obtained.

Fig. I.1.3-1 (a) Temporal evolution of magnetic island width for different ECCD locations and (b) island width at $t=10s$. ECCD location is fixed at $\rho=0.40$ (A), 0.39 (B), 0.43 (C), 0.46 (D) and 0.55 (E).

Fig. I.1.3-2 (a) Dependence of magnetic island width on EC wave power, and (b) contour plot of island width during ECCD as a function of ECCD width and EC wave power.

1.3.2 Stability of Resistive Wall Mode

Steady-state high-β plasma is required for future fusion reactors. In ideal MHD stability, achievable β is mostly limited by pressure-driven instabilities such as the kink-ballooning modes. Although these instabilities can be stabilized by placing a perfectly conducting wall (ideal wall), the actual wall has a finite resistivity and
then generates an other branch as a resistive wall mode (RWM). Therefore, the stabilization of the RWM is required for a high performance plasma. To stabilize the RWM, mainly two methods are proposed; active feedback control and plasma rotation effect. As for the RWM experiment, an advantage of JT-60U is various tangential NBs; therefore, the plasma rotation can be controlled. We have performed the RWM experiments focused on the stabilization effects due to the wall and the plasma rotation.

1) Current-Driven RWM Experiment

1) Wall Stabilization Effect
To investigate the basic features of the RWM, we have performed current-driven RWM experiments. When q_{eff} was below 3, a instability grew with about 10 ms without oscillation and a plasma collapse was observed. Note that this mode has $m/n = 3/1$ mode structure. Since the wall skin time of JT-60U is about 10ms, this mode can be identified as the RWM. To confirm the wall stabilization effect on RWM, plasma is systematically shifted away from the outer wall. Figure 1.3-1 shows experimental growth rates γ versus the normalized wall radius. In Fig. 1.3-1, solid line shows the dispersion relation without plasma rotation and dissipation in cylindrical geometry. When the plasma is moved away from the wall, the growth rates of RWM become larger, as is consistent with the dispersion relation.

2) Plasma Rotation Effect
To investigate the stabilization effect of the plasma rotation, we performed experiments with different plasma rotation which was controlled by tangential NBs. Figure I.3-4 (a) shows two profiles of the toroidal plasma rotation V_{tor} at $\delta L = 10\text{cm}$, where δL denotes the clearance between the plasma surface and the first wall at low field side. The experimental growth rates at $\delta L = 10, 20, 30$ and 40cm with different plasma rotation are shown in Fig. I.3-4 (b). Note that the experimental data at zero rotation are in ohmic discharges. For the $\delta L = 10$ and 20cm case, the growth rates with a slow plasma rotation become twice smaller than that with a fast plasma rotation. However, for $\delta L = 30\text{cm}$ case, the growth rates become larger. In the case $\delta L \leq 30$, the instabilities were occurred with $q_{\text{eff}} \leq 3$, while in the $\delta L = 40\text{cm}$ case, the instabilities were observed with $q_{\text{eff}} \leq 4$. Although the resistive wall can stabilize $m/n = 4/1$ mode with wall positions $\delta L \leq 30$, the wall can no longer stabilize this mode in the $\delta L = 40\text{cm}$ case. These data shows that the plasma rotation tends to stabilize RWM. However, in this experiment, NBs, which were injected to control plasma rotation, increased a plasma pressure. Therefore, not only a current but also pressure must be considered as driving force of instabilities. Further analysis taking into account both driving force is required.
(2) Pressure-Driven RWM Experiment

To induce RWM near the wall, a lot of NBs were injected to a negative shear plasma ($l \sim 0.7$), which has a lower critical β_N. At β_N reached 2.4, plasma disrupted with an instability (Fig. 1.1.3-5). According to ideal MHD stability calculation, $\beta_{wall} N$ is about 2.2. The decomposed magnetic fluctuations show that $n = 1$ was dominant and the growth rate is 10ms which is similar to the wall penetration time. Consequently, we have identified that this mode is the $n = 1$ pressure-driven RWM.

![Waveforms of the pressure-driven RWM experiment](image)

Fig. 1.1.3-5 Waveforms of the pressure-driven RWM experiment. (a) Plasma current, (b) β_N and NB heating powers. (c) Normal magnetic fields fluctuation decomposed as $n = 1$.

1.3.3 Confinement Degradation of Energetic Ions due to Alfvén Eigenmodes

MHD instabilities driven by energetic ions, such as TAE, has been widely studied, because these instabilities can enhance the transport of α-particles from core region of the plasma, and then degrade the performance of burning plasmas. Recently, AEs, whose frequency rapidly sweeps and then saturate as the minimum value of the safety factor, q_{min}, decreases, which are mainly observed in reversed shear plasmas, have been extensively studied. These frequency behavior can be explained by reversed shear induced AEs (RSAEs) [1.3-3] or Alfvén Cascades (ACs) [1.3-4] and its transition to TAEs. In the previous studies in JT-60U, it has been reported that the transition phase was most unstable. However, the effect of these AEs on confinement of energetic ions has not been understood yet. In this work, the effect due to these AEs has been investigated. Figure 1.1.3-6 shows time trace of (a) q_{min} and (b) frequency spectrum of $n = 1$ instabilities measured by Mirnov coils in the NNB injected weak reversed shear plasma (E43978, $B_T = 1.7T$, $I_p = 1.0MA$, $P_{NNB} = 4.0MW$, $E_{NNB} = 370keV$). Frequency of these instabilities swept up rapidly and saturated as q_{min} decreased from 4.6 to 5.5s. After that, these instabilities were almost stabilized. Thick broken lines in Fig. 1.1.3-6 (b) denote estimated frequency of $n = 1$ AEs with RSAE model described in Ref. 1.3-3. As shown in Fig. 1.1.3-6 (b), observed frequency behavior can be explained by RSAEs and its transition to TAEs. Solid line in Fig. 1.1.3-6 (c) shows time trace of total neutron emission rate (Sn). Increase of Sn was suppressed with RSAEs and TAEs. After these AEs were stabilized at $t \sim 5.5s$, the increasing rate of Sn was enhanced rapidly. This suggests confinement degradation of energetic ions due to these AEs. Then, in order to evaluate how confinement of energetic ions was degraded, Sn was calculated with OFMC code, taking into account the changes in the bulk plasma. The calculation was performed assuming that the confinement was classical and beam-thermal neutron was dominant. Actually, beam-thermal neutron emission rate accounted for ~90% of total neutron emission rate according to the

![Time trace of total neutron emission rate](image)

Fig. 1.1.3-6 Time trace of (a) q_{min}, (b) frequency spectrum of magnetic fluctuation. Thick broken lines denote estimated frequency from the RSAE model. Frequency behavior can be explained by RSAEs and its transition to TAEs. Time trace of (c) measured total neutron emission rate (solid line) and calculated one by classical theory (classical) (circle) (d) reduction rate of Sn.
calculation with a transport code TOPICS. Shown in circles of Fig. 1.1.3-6 (c) is calculated Sn by classical theory. It is found that measured Sn is smaller than calculated one in the presence of these AEs. Whereas, after AEs were stabilized, measured one became close to calculated one, then was consistent with that at t ~ 5.9s. This evaluation indicates confinement degradation of energetic ions due to AEs was confirmed. Fig. 1.1.3-6 (d) shows time trace of reduction rate of Sn, which was estimated from the ratio of measured Sn to calculated one. One can see that the rate is largest in the transition phase from RSAEs to TAEs. The previous studies that the transition phase from RSAEs to TAEs was most unstable [1.3-3] support this result. Here, the maximum reduction rate is estimated as \(\Delta S_n/S_n \) max ~ 45% at t ~ 5.0s. Confinement degradation of energetic ions in the presence of RSAEs and TAEs is quantitatively evaluated for the first time [1.3-5].

References

1.4 H-mode and Pedestal Research
1.4.1 Roles of Plasma Rotation and Toroidal Field Ripple on H-mode Confinement in JT-60U [1.4-1]

The edge pedestal structure characterized by the formation of the H-mode edge transport barrier (ETB) is known to determine the boundary condition of the heat transport in the plasma core. It has prevalently been believed that the \(E \times B \) flow shear in the peripheral region plays an important role in suppressing the level of turbulence and in reducing correlation length of the turbulence that helps the formation of the ETB structure. In ITER, the toroidal field ripple is estimated as 0.5-1 %. However, the influence of the toroidal field ripple on the pedestal structure and plasma confinement quality is not known. It is presumed that the toroidal field ripple induces the toroidal rotation towards the counter direction. It is likely that in the peripheral region the ripple loss of fast ions produces an inward electric field, which drives the counter-directed toroidal rotation. In this study, conducting the power scans for a variation of the toroidal momentum sources, the characteristics of the H-mode confinement have been investigated. Although it is hard to modify the arrangement of the toroidal field coils from the viewpoint of the technological constraint, the effect of the toroidal field ripple can be examined by changing the plasma configuration. The experiments were carried out at three cases of geometrical configurations. With increasing the plasma volume \(V_p \) from 'small' (\(V_p \sim 52m^3 \)), 'medium' (\(V_p \sim 65m^3 \))
and 'large' size (V_p...75m3) in turn, the toroidal field ripple increases from 0.4, 1.0 and 2.0%, respectively. Figure 1.1.4-1(a) shows the dependence of the β_{pol}^{ped} on the ratio of the loss power of the fast ions to the NB injection power or P_L^{fast}/P_{in}. It is found that the β_{pol}^{ped} tends to increase when the fast ions' loss power fraction decreases. The observed increase of β_{pol}^{ped} at fixed toroidal field ripple and momentum source comes from the increased absorbed power. When β_{pol} in the plasma core is raised by high power heating, it has been known that the MHD stability boundary at the plasma edge is improved. Figure 1.1.4-1(b) shows the dependence of the H_T-factor on P_L^{fast}/P_{in}. It is shown that operating at smaller loss power fraction of fast ions does not always produce high energy confinement while the achievable confinement performance tends to decrease with increasing P_L^{fast}/P_{in}. The H-mode plasmas with the toroidal momentum source heading for the co-direction are sensitive to the ripple loss of fast ions.

The H-mode plasmas with small ripple loss at the momentum source for co-direction clearly show the highest performance. However, the energy confinement with the toroidal momentum source heading for the ctr-direction does not vary when the ripple loss of fast ions is changed.

One can find that the toroidal plasma rotation for co-direction displays its potential on the improvement of the energy confinement through the enhanced pedestal pressure. The temperature profiles in the H-mode plasmas are in many cases characterized by the minimum critical scale length of the temperature gradient L_T. Thus, it will be investigated whether the high confinement with the momentum source in the co-direction is due to the change of the critical L_T or the increase of the pedestal temperature.

1.4.2 Characterization of Type-I ELMs in Tangential Co-, Balanced-, and Counter- Plus Perpendicular NBI Heated Plasmas on JT-60U [1.4-2]

Effects of plasma rotation on the Type-I ELM characteristics have been systematically studied in the JT-60U tokamak, scanning combinations of NBI (tangential co-, balanced-, and counter-NBI plus perpendicular NBI) in the three different plasma volume to change the toroidal field ripple at the plasma edge, corresponding ripple amplitude for small, medium and large volume plasma were δ_r~0.4, 1.0 and 2.0%, respectively. We performed the following experiment under the condition of the plasma current, I_p=1-1.2MA and toroidal magnetic field, B_T=2.6T at the n_e/n_GW~0.4-0.5 with q_{95}~4.1.

Figure 1.1.4-2 shows the ELM characteristics in the small volume plasma case. As can be seen in Fig.1.1.4-2(a), ELM frequency, f_{ELM}, increased with the heating power crossing the separatrix, P_{SEP}, as $df_{ELM}/dP_{SEP} > 0$. This power dependence in the f_{ELM} was

![Fig. I.1.4-2 Plots of (a) ELM frequency versus heating power crossing the separatrix, (b) ELM energy loss versus pedestal stored energy, and (c) power loss due to ELM, $P_{ELM} (= \Delta W_{ELM} \times f_{ELM})$, normalized by P_{SEP}. These data are taken in the small volume configuration. Circles, squares and inverse-triangles indicate the tangential co-, balanced-, and counter- plus perpendicular-NBI heated plasmas, respectively.](image-url)
confirmed in all plasma configurations and so that observed ELM in these scan could be classified into type-I ELM.

The ELM energy loss normalized by pedestal stored energy, $\Delta W_{\text{ELM}}/W_{\text{ped}}$, appears to be smaller when the external momentum input is in the counter direction, especially in small volume configuration case as shown in Fig.1.1.4-2(b). Although each data point has somewhat large statistic error, the averaged value, $<\Delta W_{\text{ELM}}/W_{\text{ped}}>$, in the co-NBI discharge is significantly higher than that in the counter-NBI. In this analysis, it is noted that each ΔW_{ELM} is the averaged value during ELM cycles over an interval of Δt~100ms, and the corresponding error bar is its statistical error of this averaging process.

The most interesting point is the dependences of the power loss due to ELM, $P_{\text{ELM}} = \Delta W_{\text{ELM}} \times I_{\text{ELM}}$, normalized by P_{SEP}, which is constant among co-, balanced, and counter-NBI, suggesting that the power loss due to inter-ELM transport, $P_{\text{inter-ELM}}$, is almost unchanged among co- balanced, and ctr-NBI plasmas (i.e. $P_{\text{inter-ELM}}/P_{\text{SEP}}$=1- $P_{\text{ELM}}/P_{\text{SEP}}$). As a result, we have demonstrated that ELM energy loss can be controlled by means of counter-NBI in a clear Type-I ELM regime, while keeping confinement quality fixed. On the other hand, when the plasma configuration changed from small to middle and large, the $P_{\text{ELM}}/P_{\text{SEP}}$ decreases with increasing the plasma volume, suggesting an increase in the inter-ELM transport.

1.4.3 Pedestal Conditions for Small ELM Regimes in Tokamaks [1.4-3]

Several small/no ELM regimes such as EDA, grassy ELM, HRS, QH-mode, type II and V ELMs with good confinement properties have been obtained in Alcator C-Mod, ASDEX-Upgrade (AUG), DIII-D, JET, JFT-2M, JT-60U and NSTX. All these regimes show considerable reduction of instantaneous ELM heat load onto divertor target plates in contrast to conventional type I ELM, and ELM energy losses are evaluated as less than 5% of the pedestal stored energy. In order to compare the pedestal conditions in these many regimes, they have been categorized into four main groups (grassy ELM regime, type II ELM regime, QH-mode regime and enhanced recycling with high $v_{\text{i}e}^*$ regime) in terms of ELM energy loss and pedestal electron collisionality $v_{\text{i}e}^*$, which plays a significant role in pedestal stability through modification of the edge bootstrap current. Moreover, ITER will have a low collisionality pedestal.

Achieved pedestal pressure in the type II ELM regime is comparable to the usual type I ELM regime in spite of the existence of edge fluctuations. Moreover, higher pedestal pressure can be obtained in JET. Because of a requirement of high density, the edge collisionality remained at moderate values ($v_{\text{i}e}^* > 0.8$). It should be noted that a narrow operational window in density (0.85 < R_{nn} / $R_{\text{nn}} < 0.95$) is observed in AUG.

On the other hand, the grassy ELM regime was found in JT-60U as another small ELM regime at lower $v_{\text{i}e}^*$ in high β_p plasmas with simultaneously high q_{95} and high δ. In recent experiments on JET and AUG, grassy-like ELMs were also observed following the grassy ELM prescription with high β_p plasmas ($\beta_p > 1.7$) at high q_{95} (q_{95}~7) and high triangularity ($\delta > 0.4$).

Figure 1.1.4-3 shows the comparison of the non-dimensional operational regime in β_p-δ space between high n_e type II ELM and grassy ELM regimes.

![Fig. 1.1.4-3 Operational space in $v_{\text{i}e}^*$ versus β_p for small/no ELM regimes and type I/III ELM regime.](Image)
It suggests that there is not a large requirement of poloidal beta β_p for type II ELM in contrast to the grassy ELM regime. On the other hand, a quasi-double null (QDN) configuration is required in AUG, where the typical operational value is $\delta > 0.4$.

As can be seen in Fig. I.1.4-3, grassy ELMs can be obtained at low collisionality of ~ 0.3 in JT-60U. Nevertheless, achieved v_e^* in grassy ELM plasmas was comparable to type II ELM plasmas in JET. It is noted that no significant edge fluctuations related to enhanced losses were observed in any devices with grassy ELMs.

The required condition to enter the small/no ELM regimes in terms of the plasma shape is also important to investigate further, because ITER cannot operate using a double null configuration and Δ_{sep} (the distance between the separatrix and the flux surface through the upper X-point at the outer midplane) should be kept larger than 4cm. So far, a QDN configuration is required both for type II ELMs and for grassy ELMs in AUG. In JET, type II ELM does not require QDN configuration, while grassy ELM has been observed in QDN configuration so far. Grassy ELMs in JT-60U have often been observed for lower single null (LSN) operation without a second separatrix and type V ELM in NSTX also requires LSN configuration. On the other hand, higher δ is an important condition for small ELM regimes. Since it is difficult to separate between effects of δ and Δ_{sep} in some devices due to the hardware limitations, we should consider these issues in further experiments.

References

1.5 Divertor/SOL Plasmas and Plasma-Wall Interaction
1.5.1 Fluctuations in High- and Low-Field-Side SOL
Study of the ELM radial propagation to the first wall was presented in the 32nd EPS [1.5-1] with improving sampling rate of 500kHz for the Mach probes (at outer midplane and X-point) and magnetic pick-up coils. In 2005, measurement of the plasma fluctuations both at HFS and LFS SOLs has been, for the first time, performed in JT-60U since electrodes of the HFS reciprocating Mach probe was repaired. Statistical analysis such as a probability distribution function (p.d.f.) described intermittent (non-diffusion) transport in SOL plasma fluctuations as shown in Fig.I.1.5-1 [1.5-2]. Fluctuation level of the ion saturation current ($\delta_{js}/\langle j_s \rangle$) at HFS was 1/3-1/10 smaller than that at LFS. It was found that the positive bursty events appeared most frequently at LFS midplane distance from separatrix ($\Delta r \sim 5$cm), and flat far SOL was formed in outer flux surfaces ($\Delta r > 5$cm). Positive bursty events were seen in wide SOL radii ($\Delta r < 7$cm) only at LFS midplane, where the “flow reversal” of the SOL plasma was observed. Influences of the radial transport of the convective blobby plasma on the SOL formation and the flow reversal were investigated.

Fig. I.1.5-1 (a) j_s profiles measured with LFS midplane (circles) and HFS (squares) Mach probes in L-mode. (b) fluctuation level of j_s. (c) Skewness, (d) Mach number. HFS baffle is located at the flux surface of 6cm LFS midplane distance.
1.5.2 Modeling of Divertor Pumping Using SOLDOR/NEUT2D Code

To characterize the divertor pumping for particle and heat control in the SOL/divertor, simulations using the SOLDOR/NEUT2D code developed originally [1.5-3] were performed to the JT-60U long pulse discharge [1.5-4]. The simulation reproduces the neutral pressure and pumping flux in the exhaust chamber at the experiment by treating the desorbed flux from the wall similar as the gas puff flux (Fig. I.1.5-2). Heat loads on the divertor targets satisfy the heat balance consistently. Parametric survey shows the pumping efficiency (ratio of pumping flux to generated flux around the divertor targets) [1.5-5] increasing with the pumping speed. It is found that the pumping speed higher than the present capability (26m3/s) is necessary for the active particle control under the wall saturation condition. On the other hand, shortening the strike-point distance (distance from extension point of the private dome wing on the divertor target to the strike point) from 10cm to 2cm, the pumping efficiency is enlarged by a factor of 1.5 with increase of the viewing angle from strike point to pumping slot and the incident flux into exhaust chamber. A virtual tilt of the divertor targets to 15° vertically enhances the pumping efficiency by a factor of 1.2 with a low target heat load.

1.5.3 Two-Dimensional Structure of Volume Recombination of Hydrogen and Impurity Ions

In order to investigate two-dimensional structure of divertor plasmas, a spectrometer with 92 viewing chords (vertically 60ch and horizontally 32ch) has been prepared, and a computer tomography technique using a maximum entropy method has been developed. Figure I.1.5-3 shows reconstructed emission profiles of D I ($n=2-5$) and C IV ($n=6-7$) during an X-point MARFE. The emission peaks of D I ($n=2-5$) are found above the outer and the inner strike point. In contrast, the emission peak of C IV ($n=6-7$) is found in the main plasma just above the X-point. Because these two lines are emitted predominantly, resulting from volume recombination of D$^+$ and C$^{++}$, respectively, these emission profiles are interpreted as the two-dimensional structures of volume recombination.

Because the ratio of D I ($n=2-6$) to D I ($n=2-5$) gives electron temperature of recombining plasma, the two-dimensional structure of electron temperature can

Fig. I.1.5-2 (a); Time evolutions of neutral pressure in front of penning gage, when the pumping speed S_{pump} is increased from 10m3/s to 26m3/s at $t = 20$s in JT-60U long pulse discharge under the wall saturation condition. (b) and (c); Simulated contour plots of neutral pressure (molecular pressure in the exhaust chamber and atom pressure in the divertor region) for (b) $S_{pump}=10$m3/s and (c) $S_{pump}=26$m3/s.

Fig. I.1.5-3 Emissivity of (a) D I ($n=2-5$) and (b) C IV ($n=6-7$) during an X-point MARFE, reconstructed by a computer tomography technique (tentative version for demonstration).
be obtained from the ratio of the reconstructed emission profiles of these lines. This method is in progress.

1.5.4 Emission Rates of CH/CD and C_2 Spectral Bands for Loss-Events of CD_4 and C_2H_6

To evaluate hydrocarbon sputtering flux from emission intensities of CH/CD and C_2 spectral bands, the numbers of CH/CD and C_2 photons until one hydrocarbon molecule is ionized in plasma, are required. The reciprocals of these numbers, hereafter called loss-events / photon, have been measured.

To measure the CD_4-loss-events / CD photon, CD_4 was injected at a known rate into the outer divertor plasma. The CD emission was measured along two similar viewing chords: one views the plasma in front of the gas-puff nozzle and the other does not. The difference of the CD emission measured with the two viewing chords is originated from the injected CD_4. Hence, the CD_4-loss-events/CD photon was determined as the ratio of injected CD_4 flux to the difference of the CD emission. Similar measurements for C_2H_6 to determine the C_2H_6-loss-events/CH photon and the C_2H_6-loss-events/C_2 photon were done [1.5.6].

Figure 1.1.5-4 shows the measured loss-events/photon. The loss-events/photon is stronger than that of C_2-loss-events/CH photon. In addition, at 20eV, the absolute values agree within a factor of 2. The data obtained in the present work will be used to measure the CH_4/CD$_4$ and C_2H_6/CD$_2$ sputtering yields.

1.5.5 Carbon Deposition and Hydrogen Isotope Retention in the JT-60U Plasma Facing Wall

Erosion/deposition analyses for the plasma facing wall showed that deposition was dominant at the inner divertor (A) and the outer dome wing (C), whereas erosion dominant at the outer divertor (D) and the inner dome wing (B) (Fig. 1.1.5-5). The upper area of the first wall was mainly eroded, while the bottom area of the inboard wall was deposition dominated [1.5-8]. In deposition analyses for the plasma shadowed area, thick deposition (~several 10µm) was observed on the bottom side of the outer dome wing tile, and no deposition was found on the bottom edge of the inner divertor tile. These results indicated that local transport of eroded carbon to inboard direction plays an important role on the carbon redeposition process.

Distribution of deuterium and hydrogen retained in graphite tiles placed in the divertor region of JT-60U with the both side pumping geometry was investigated by thermal desorption spectroscopy. The retention of hydrogen isotopes is nearly proportional to the thickness of carbon redeposited layers, though their concentration changes with the location of the tiles. The least concentration of ~ 0.02 in $(H+D)/C$ is found in the redeposited layers on the inner divertor tile. This value agrees well with H/C of ~0.030 observed for the redeposited layers on the divertor tiles exposed to HH discharges in the JT-60 open divertor, and $H+D/C$ of ~0.032 in the inner divertor tiles exposed to DD discharges in the JT-60U with the inner side pumping system. Rather high hydrogen concentration is found in the redeposited layers on plasma-shadowed area.

![Fig. 1.1.5-4 Loss-events as a function of electron temperature. Open circles indicate the ratio of CD_4-loss-events to a CD-spectral-band photon, closed circles and diamonds the ratios of C_2H_6-loss-events to a CD- and to a C_2-spectral-band photon, respectively.](image1.png)

![Fig. 1.1.5-5 Location of the erosion and deposition dominated area in the JT-60U W-shaped divertor. The results showed the eroded carbon was transported to the inboard direction. The highest hydrogen isotope retention was found at the bottom side of the outer dome wing tile (E).](image2.png)
In particular, the redeposited layers on the bottom side of the outer wing tile (see Fig. 1.1.5-5.E) shadowed from plasma and facing to the pumping slot shows the highest concentration of 0.13 in (H+D)/C [1.5-9]. In JT-60U, however, the deposition at the shadowed area is very small, which is a candidate to explain the smallest total retention in the divertor area compared with other large tokamaks.

1.5.6 13C Tracing and Deposition
To clarify the transport and deposition places of carbon impurities, the 13CH$_4$ gas puffing experiment was carried out in JT-60U [1.5-10]. Figure 1.1.5-6 shows the location of the gas puffing port and a plasma configuration for the experiment. The total of $\sim 2 \times 10^{23}$ 13CH$_4$ molecules was puffed into 13 L-mode plasma discharges. Deposition layers of thicker than 200μm were observed on the outer divertor tile adjacent to the gas puffing port. The poloidal distribution of the 13C deposition adjacent to the 13CH$_4$ gas puffing port agrees well with that of the positioning frequency on the outer divertor tiles. Therefore it is considered that a large amount of carbon impurity generated at the outer divertor re-deposited near eroded place and was transported by repetition of erosion and redeposition.

Although the first wall located in the inner side was thought to be exposed to SOL plasma during the discharges, deposited 13C on the first wall was the lowest among the analyzed tiles. This suggests that carbon impurities transport from the inner to the outer divertor region through SOL takes a long term. The 13C surface density peaked at the lower side of the inner striking point on the inner divertor tile as shown in Fig. 1.1.5-7. It is suggested that a large part of 13C puffed from the outer divertor is transported through the drift flux toward the inner divertor. This result indicates the existence of another transport path of carbon impurities generated in the outer divertor region in addition to the SOL flow.

References
2. Operation and Machine Improvements

Two cycles of the JT-60 operation were implemented in FY 2005, which included 945 shots of plasma pulse discharge, 104 shots of commissioning pulse sequence, 30 hours of Taylor-type discharge cleaning and 323 hours of glow discharge cleaning.

In order to reduce a large ripple of toroidal field, which had been considered to limit operational performance of large-volume plasmas in JT-60U, ferritic steel tiles were newly installed as a part of the first wall in place of carbon tiles during the maintenance period in 2005. To compensate the magnetic influence of the ferritic tile insertion on plasma equilibrium, a new real-time program was developed to correct the magnetic sensor signals including poloidal magnetic field and flux from the ferritic steel magnetized by the toroidal magnetic field. The plasma magnetic surface calculated in consideration of the ferritic tiles agrees to the separatrix line reproduced by CXRS measurement results near the upper port within a few centimeters in the largest magnetization case at Bt=2T. After careful confirmation of position and shape reconstruction accuracy, JT-60 experiments were successfully performed on schedule.

2.1 Tokamak Machine

2.1.1 Improvement of Pellet Injector for Long Pulse Operation

In order to extend the JT-60 operation to high density regime and to investigate the impact of particle fuelling on confinement and pedestal parameters, the pellet injector has been under modification to have long injection duration (~60 s) and high repetitive injection frequency (≤20 Hz). The pellet extruder was changed from the piston type to the screw type (Fig. I.2.1-1). This screw type pellet extruder can produce a 2.1 mm x 2.1 mm ice rod with an extrusion speed of 46 mm/s for 60 s or with a extrusion speed of 38 mm/s for 360 s. The new screw type pellet extruder was assembled into the present centrifugal pellet injector used for JT-60U. The production of a transparent ice rod has been confirmed in some operation conditions. The liquefier and nozzle temperatures are being optimized.

2.1.2 Installation of Supersonic Molecular Beam Injector

Supersonic molecular beam injectors (SMBI) were installed both at the high-field-side and low-field-side of the JT-60U Vacuum Vessel in collaboration with CEA Cadarache. The injector head is the same as that installed in Tore Supra (Fig. I.2.1-2). The SMBI can be operated with a frequency of 8-10 Hz and 2 ms duration per pulse. Theoretical gas flow was evaluated to be 510 Pam³/s with a Mach number of 4.1 (speed of 2.2 km/s) at operation temperature of 150°C and fueling pressure of 0.5 MPa. The particle fueling to a plasma with the SMBI is expected to be deeper than gas puffing, but shallower than pellet injection. The gas injection test into the JT-60U vacuum vessel was carried out using helium gas at operation temperature of 150°C and fueling pressure of 0.2 MPa. The amount of injected gas from the low-field-side injector was estimated to be 0.14 Pam³ per pulse.
2.1.3 Installation of Ferritic Steel Tiles as the Outboard First Wall [2.1-1]

In order to reduce the toroidal magnetic field (TF) ripple, 8Cr-2W-0.2V ferritic steel tiles were installed at the out board wall inside the vacuum vessel (Fig. I.2.1-3). 8Cr-2W-0.2V ferritic steel was selected among candidate ones such as F82H developed as a low activation ferritic steel, because the saturated magnetization of 8Cr-2W-0.2V ferritic steel was high enough for the experiments planned with the toroidal magnetic field, and the low activation was not critical at the present level of neutron production in JT-60. By August 2005, 1122 carbon tiles near the inside of the TF coils were replaced to ferritic steel tiles with reinforcement of stud nuts. The dimensions of the most tiles are 130 mm(length) x 185 mm(width) x 23 mm(thickness), which is 2 mm thinner than the carbon tiles. The surfaces position of the ferritic tiles were arranged at more than 1.5mm below those of the carbon tiles. Slits were made in each tile to reduce the electromagnetic force due to eddy current.

Fifty-five plates of 8Cr-2W-0.2V ferritic steel were manufactured from the 2.6 ton ingots made by 20 ton vacuum induction melting in January 2006. Magnetic properties of the ferritic steel plates fabricated in large scale melting were investigated. It was shown that the average saturated magnetization was 1.838 Tesla, and the confidence interval of 95% was between 1.833 and 1.843 Tesla at ambient temperature. The variation among the plates fabricated was confirmed to be sufficiently small. The saturated magnetization was 1.66 Tesla at 573 K, the maximum baking temperature of the relaxation of the activation-element. Although it was lower than the expected value, it was confirmed by a numerical calculation that the saturated magnetization of 1.7 Tesla was still sufficient for the JT-60 experiment.

2.1.4 Study of the Plasma-Surface Interaction

The cooperative research program between JAEA and universities using the JT-60 first wall tile was initiated in 2001. Under the program, various studies on the plasma facing materials have progressed. Major research activities conducted in FY 2005 except for the results mentioned in Section I.1.5 [1.5-8, 1.5-9, 1.5-10] are as follows:

(1) Measurement of Tritium Distribution at the Tile Gap [2.1-2]

Tritium retention on the side surfaces which locate at gaps between the W-shaped divertor tiles was analyzed by the imaging plate technique and a combustion method. The samples measured were exposed in the plasma discharges from June 1997 to March 2003. Total amount of tritium generated was \(\sim 5.7 \times 10^{19} \) (\(\sim 102 \) GBq) during this period.

Tritium retention was essentially correlated with the carbon deposition profile at the gap. On the both toroidal sides (i.e. toroidal gaps), the tritium concentration exponentially decreased with the distance from the front end to the bottom end with the e-folding length of around 3 mm.

Tritium retention profiles on the poloidal sides (i.e. poloidal gaps) varied with their location. Relatively high tritium retention was found at (i) the gaps between the inner target tiles and (ii) the bottom side of the outer divertor tile facing to the outer pumping slot. According to SEM observation, those side surfaces were covered by the redeposited layers with the maximum thickness of \(\sim 80 \) µm (i) and \(\sim 90 \) µm (ii), indicating that tritium was incorporated in the redeposited layers.

The amount of the tritium retention in the divertor tile gaps determined by the combustion method was approximately 67 MBq (assuming full toroidal symmetry in the tritium retention profiles), which corresponds to \(\sim 0.07 \% \) of the total generated tritium.
(2) Exhaust Gas Analysis during Experimental Operation [2.1-3, 2.1-4]

The exhaust gas from JT-60U during the experimental operation has been investigated to understand behavior of hydrogen as fuel and to obtain basic data of impurity. Exhaust gas was measured with Mass Spectrometer, Micro Gas Chromatography and Ion Chamber. Because we didn’t individually measure hydrogen isotopes (H, D, T) in the experiment, all three hydrogen isotopes are described as H. On the other hand, some impurity species could be individually measured during plasma discharges. The ratio of CH₄, CO₂, C₂H₂+C₂H₄ and C₃H₆ were 44%, 42%, 12% and 2%, respectively. These ratios of impurity species were independent on the wall temperature, even though the amounts of exhausted H and impurities increased with the wall temperature due to high recycling. Concentration of carbon compounds varied in each shot and the maximum amount of exhausted carbon was several mg in a shot. There was a tendency between the exhaust gas and the plasma parameter, indicating that the amounts of exhausted H and impurities increased with the maximum electron density of the plasma.

References

2.2 Control System

2.2.1 Innovative Integrator Resistant to Plasma Instabilities

In the development of a precise integrator for magnetic measurements aiming at long pulse operation, saturation of an amplifier caused by exposure of excessive voltage input from the sensor is the only remaining issue [2.2-1, 2.2-2].

Figure 1.2.2-1 (a) shows a good, accurate integration result for the output of a magnetic probe in a discharge with a disruption; no baseline change was observed before and after plasma discharge. Unexpectedly, soon after a few disruption shots, clear baseline gap was again observed, as shown in Fig. 1.2.2-1 (b). This was caused by the damage of the FET-Zener diode elements in the signal input circuit.

To find out a proper method to provide the required durability under the repeated disruptive instabilities, we made and tested three trial signal input circuits; board #1 with high voltage (+2kV) resistant diode, board #II with power Mos FET (+1kV/-0.6kV) and board #III with a precise attenuator insertion with an FB compensator. The linearity errors of the board #I and #II exceeded the specification of the employed operational amplifier (+0.001%) for three ranges 10V, 100V, and 1000V. The cause was considered to be a large leakage current of the signal input protection elements. The linearity error of the board #III was smaller than 0.001%. Therefore, the board #III has been applied to the input circuit. Furthermore, to correctly integrate fast varying input signals during disruptions, the time resolution has been improved by increasing the integration cycle from 1.0kHz to 10kHz. Figure 1.2.2-2 shows an example of good result. The integration error caused by over-range input had been successfully corrected. This development has been carried out as ITA (ITER Transitional Arrangements) task for ITER.

![Fig. 1.2.2-1 A gap of integral results occurred after several exposures to high voltage at a disruption.](image1.png)

![Fig. 1.2.2-2 Corrected integration result.](image2.png)
2.2.2 Plasma Movie Database System

A plasma movie is generally expected as one of the most efficient methods to know how plasma discharge has been conducted in the experiment. On this motivation, a real-time plasma shape visualization system has been developed and operated over ten years. The current plasma movie is composed of (1) video camera picture of cross-sectional view of a plasma, (2) computer graphic (CG) picture, and (3) magnetic probe signal as a sound channel.

In order to use this movie efficiently, a new system having the following functions has been developed; (a) to store a plasma movie in the movie database system automatically after a discharge sequence, and (b) to make a plasma movie be available (downloadable) for experiment data analyses at the Web-site, as shown in Fig.1.2.2-3.

Fig.1.2.2-3 Configuration of the Plasma Movie Database System.

The plasma movie capture system stores the movie file in a format of MPEG2 first. Secondly, it transfers a movie file in a MPEG4 format to the plasma movie web-server. In response to the user’s request, the plasma movie web-server transfers a stored movie data. The movie data amount for the MPEG2 format is about 50Mbyte/shot (65s discharge), and that for the MPEG4 format is about 7 Mbyte/shot. It has been confirmed that the transfer of plasma movie takes a few seconds through a local area network. After one plasma discharge sequence is finished, the plasma movie file for the 15s to 65s pulse discharge comes to be available for the web-users in about 6 to 16 minutes.

References

2.3 Power Supply System

Annual inspections and regular maintenances for the power supply systems have been conducted to maintain availability of high power operations as shown in Table 1.2.3-1. These activities contributed to achieve safe operation of the power supplies.

Table 1.2.3-1 Inspections and overhaul of the power supply systems.

<table>
<thead>
<tr>
<th>Item</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhaul of the Oil-cooled Transformer</td>
<td>April</td>
</tr>
<tr>
<td>Detail Inspection of the Motor Generator and</td>
<td>August–October</td>
</tr>
<tr>
<td>the Poloidal Field Coil Power Supply</td>
<td></td>
</tr>
<tr>
<td>Regular Inspection of the Grounding and</td>
<td>September</td>
</tr>
<tr>
<td>Lightning systems</td>
<td>October</td>
</tr>
<tr>
<td>Regular Inspection of the Toroidal Field Coil</td>
<td>September</td>
</tr>
<tr>
<td>Power Supply</td>
<td>–October</td>
</tr>
<tr>
<td>Regular Inspection of the Power Supply for</td>
<td>September</td>
</tr>
<tr>
<td>Additional Heating Facilities</td>
<td>–October</td>
</tr>
<tr>
<td>Regular Inspection of the Power Distribution</td>
<td>October</td>
</tr>
<tr>
<td>Systems</td>
<td></td>
</tr>
</tbody>
</table>

2.3.1 Overhaul of the Oil-Cooled Transformer

The regular gas chromatograph analysis of insulating oil in the oil-cooled transformers for TFC power supply detected abnormal quantities of flammable gas, C₂H₄, C₂H₂, etc., in January, 2005. This transformer for the thyristor drive device of the motor generator has a zero-voltage tap changer. The specifications and outer appearance are shown in Table 1.2.3-2 and Fig.1.2.3-1. The pattern of the gas contents showed flammable gas was produced by overheats of the oil. A spring-forced metal contact could produce “creep” on a contact surface. This would result in a temperature rise at the contact surface, and generate carbide layers for a certain period. This scenario seems to be supported by observation of the tap contact as shown in Fig.1.2.3-2. To avoid this phenomenon, the changeable tap contact was replaced by the fixed one.
Table I.2.3-2 Specifications of the oil-cooled transformer.

<table>
<thead>
<tr>
<th>Capacitor (kVA)</th>
<th>28,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary voltage (V)</td>
<td>10,500–11,500</td>
</tr>
<tr>
<td>Secondary voltage (V)</td>
<td>17,000</td>
</tr>
<tr>
<td>Oil quantity (L)</td>
<td>10,700</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>40,200</td>
</tr>
</tbody>
</table>

2.3.2 New AC Power System for Satellite Tokamak

The satellite tokamak, the modification of JT-60 to a superconducting tokamak, is planned to have a 41MW-100s heating operation through the Japan-Europe negotiation in 2005. The planned powers for the heating facilities are summarized in Table I.2.3-3. AC power of 130MW-100s (13GJ) is necessary for the operation with all the heating facilities, but cannot be supplied by the present motor generator for additional heating facilities (H-MG: 400MVA, 2.65GJ). The reuse of the present power supply is a basic policy of the satellite tokamak project to save the cost. Therefore, we have studied possible AC power systems that are reconstructed with the present JT-60 power supply system.

(1) Configuration of a New AC Power System

The new AC power system would be constituted of the 275kV commercial line (Tr-1) and the motor generator for the current TFC-PS (T-MG). The configuration of the new AC system is shown in Fig. I.2.3-3. The AC powers of 88MW for P-NBI and ECRF and 40MW for NNBI are supplied from the Tr-1 line and from T-MG, respectively.

Table I.2.3-3 Nominal power for Additional Heating Facilities.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Heating Power (MW)</th>
<th>Active Power (MW)</th>
<th>Reactive Power (MVar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-NBI</td>
<td>24.0</td>
<td>60.3</td>
<td>80.1</td>
</tr>
<tr>
<td>N-NBI</td>
<td>10.0</td>
<td>40.5</td>
<td>54.0</td>
</tr>
<tr>
<td>ECRF</td>
<td>7.0</td>
<td>28.0</td>
<td>21.0</td>
</tr>
</tbody>
</table>

(2) Design Study of a New Reactive Power Compensator

Power consumption of 88 MW through Tr-1 would induce voltage variation and higher harmonic currents at 275 kV power grid exceeding the values restricted by the contract with the commercial power company, TEPCO. To reduce such influence on the commercial line, a reactive power compensator consisting of a harmonic filter set and a power-factor improvement capacitor set to be installed in the circuit were designed. In the design, the existing harmonic filters and power-factor improvement capacitors were assumed to be reused as a part of the reactive power compensator.
We made the model of additional heating facilities for the simulation codes PSCAD/EMTDC. First, the response of the circuit without the reactive power compensator was simulated. The results are shown in Table I.2.3-4, and the harmonic current is shown in Fig. I.2.3-4. The equivalent disturbing current calculated with the harmonic current is 4.94A. This value does not satisfy the contract condition with TEPCO, allowable equivalent disturbing current of 1.9A.

Table I.2.3-4 Simulation result from the case without a reactive power compensator.

<table>
<thead>
<tr>
<th>Harmonic Current (A)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To explore the resolution, the simulation for the case with the reactive power compensator was conducted, and the results are shown in Table I.2.3-5. The harmonic current is shown in Fig. I.2.3-5. In the simulation, it was assumed that 11, 13 order harmonic filters were substituted by the new ones, while 18 and higher order harmonic filters and the power-factor improvement capacitors of 40MVar were reused. The equivalent disturbing current improved to 1.54A, and satisfied the contract condition. It was, therefore, concluded that a new AC power system for the satellite tokamak additional heating facilities was feasible.

2.4 Neutral Beam Injection System

The main objectives of the NBI system is to extend its pulse duration up to 30s so as to study long pulse plasmas whose duration is much longer than the current diffusion time. Four tangential positive ion-based NBI (P-NBI) units have been routinely operated up to 30s with 2MW/unit at 85keV. Also, seven perpendicular P-NBI units have been operated in series for the total pulse duration of 30s. As for the negative ion-based NBI (N-NBI) system, the long pulse operation of 10 s with two ion sources has been achieved. The high performance of NBI system at the injection power of ~10 MW for 30s has been contributed to achieve high β_n=2.3 for 28s. Moreover, the critical issues for long pulse operation are specified, such as stable source plasma control, high voltage holding and reduction of heat load of the accelerator and beamline components. Design of the upgrade of the NBI system has been started, where the total injection power of 34 MW for 100 s is planned for the satellite tokamak.

2.4.1 Renewal of Control System for Cryogenic Facility

The NBI system needs deuterium gas fueling of 3-5Pa m3/s for source plasma production and neutralization. A large cryopumping system with pumping speed of 20000m3/s is used to quickly exhaust the residual gas so as to avoid re-ionization of the neutral beam. The cryopumping system is cooled down by a liquid He cryogenic facility with a cooling capacity of 2.4kW. The control system of the cryogenic facility was constructed with Distributed Control System (DCS) computer about 20 years ago. Recently, the frequency of troubles in the control system has
increased due to its age. Therefore, the control system has been renewed using functional and inexpensive commercial Programmable Logic Controllers (PLC). Figure I.2.4-1 shows the block diagram of the new control system. The new control system is composed of four PC computers and PLCs, each of which is connected with Ethernet. The PLCs are connected with double control loops to keep a high reliability. The control program in the original DCS, consisting of about 400 feedback control loop with ~400 digital and ~800 analog data, was transferred to the program in the PLC. A distributed processing method was used to control the cryopumps independently. About 200 control views were created to obtain a high man-machine interface. The new control system was composed of four PC computers and PLCs, each of which is connected with Ethernet. The PLCs are connected with double control loops to keep a high reliability. The control program in the original DCS, consisting of about 400 feedback control loop with ~400 digital and ~800 analog data, was transferred to the program in the PLC. A distributed processing method was used to control the cryopumps independently. About 200 control views were created to obtain a high man-machine interface. The new control system was completed in September 2005 and has shown its high reliability without troubles to date. This is a new approach of the commercial PLC to the dynamic control system in the large plant [2.4-1].

Fig. I.2.4-1 Block diagram of the new control system for a cryogenic facility.

2.4.2 Progress in N-NBI System
The long pulse more than 10 sec was carried out with one ion source only in 2004. In 2005, the optimization of 10 sec operation with two ion sources has been intended. Figure I.2.4-2 shows the progress of the injection power with two ion sources. A long pulse injection at ~3.3MW for 10sec, where the acceleration beam energy and current are 340keV, ~33A, has been achieved.

Some critical issues for long pulse operation have been specified through the optimization study [2.4-2]. The first issue is to keep the negative ion production constant for long pulse operation. Once the arc discharge starts, the discharge current flows into the filament, changing its temperature distribution. Feedback control of the arc current is effective in keeping the source plasma parameters. It is also confirmed that the cesium effect depends on the temperature of the plasma grid in the large ion source. This result indicates that active temperature control of the plasma grid is essential for long pulse operation.

The second issue is to improve the high voltage holding capability of the accelerator. It was found that outgassing increased in the range of 10^-4Pa during voltage holding even when there was no-breakdown in the ion source (base pressure: 1-2x10^-5Pa). When the outgassing was well suppressed after sufficient conditioning, breakdowns were well suppressed. The main component of the outgassing was m/e=28. There was no component of m/e=14. Therefore, the outgassing was supposed to be hydro-carbon species. This result indicates that the improvement of FRP (fiberglass-reinforced plastic) insulator, which is composed of hydro-carbons, may be a key to achieve high voltage holding in the accelerator.

The third issue is to reduce the heat load of the acceleration grids and beam line components. The investigation of the negative ion beam deflection, which was measured by the infrared camera on the target plate set 3.5m away from the grid, indicates that the spread of beamlet-bundle is in proportion to the current density. Field-shaping plates attached on the extraction grid were effective in modifying the local electric field and reducing the heat load of the acceleration grid [2.4-3]. It was also found that some
has been found to get operation of P-NBI unit. The injection power of
the present N-NBI unit is less than 400keV. Thus, the main
issue of N-NBI unit is to improve the voltage holding of
the ion source up to 500kV. A modification of the
accelerator such as the insulator structure is under
consideration. The present acceleration power supply
of 500kV, 64A with an inverter switching system will
also be modified to extend its pulse duration from 10s
to 100s by adding more converter-inverter components.
The last item is shielding of the leakage magnetic field
of the satellite tokamak. The leakage field will be about
five times larger from the JT-60U, so attachment of
high permeability metal on the ion tank is required, in
addition to strengthening the canceling coils. The
detailed design study is under development [2.4-5].

2.4.3 Design Study of NBI System for the Satellite
Tokamak
Modification of JT-60U to the satellite tokamak has
been planned to contribute to ITER and DEMO. The
NBI system is required to inject 34MW for 100s. The
upgraded NBI system consists of P-NBI units and one
N-NBI unit. The injection power of each P-NBI unit is
2MW at 85keV, and that of one N-NBI unit will be
10MW at 500keV. There are three types of P-NBI units
(perpendicular: 8 units, co-tangential: 2 units, counter-
tangential: 2 units) to control deposition profile and
plasma rotation. The beam line of the co-tangential N-
NBI unit will be shifted downward from the equatorial
plane by ~0.6m to drive off-axis plasma current that is
necessary for producing reversed shear with a high
bootstrap current fraction. Figure I.2.4-4 shows the side
view of the NBI system for the satellite tokamak.

The critical issue of the modified NBI system is to
extend the pulse duration up to 100s. In long pulse
operation of P-NBI unit at 2MW for 30s, the
temperature rise of the cooling water in the ion source
has been found to get almost saturated at less than
10°C at ~15 s after the start of injection, indicating that
the present ion source of P-NBI may operate for 100 s
without modification. Under the KBSI-JAERI
collaborative program, a long pulse operation of P-NBI
ion source has been demonstrated up to 200s at
KSTAR NBI test facility though the beam current is
~20A at 60kV due to the power supply capability. In
the preliminary study, the present high voltage DC
power supply for P-NBI unit can drive the ion source
for 100s by modifying some resistances and employing
active cooling of the inner conductor in the high
voltage feeder duct. The available beam voltage of the
present N-NBI is less than 400keV. Thus, the main
issue of N-NBI unit is to improve the voltage holding
of the ion source up to 500kV. A modification of the
accelerator such as the insulator structure is under
consideration. The present acceleration power supply
of 500kV, 64A with an inverter switching system will
also be modified to extend its pulse duration from 10s
to 100s by adding more converter-inverter components.
The last item is shielding of the leakage magnetic field
of the satellite tokamak. The leakage field will be about
five times larger from the JT-60U, so attachment of
high permeability metal on the ion tank is required, in
addition to strengthening the canceling coils. The
detailed design study is under development [2.4-5].
2.5 Radio-Frequency Heating System

2.5.1 Long-Pulse Operation of the ECH System

Trail of Pulse extension of the ECH system is being carried out to enhance the plasma performance in the recent experiment campaign in JT-60U focusing on long sustainment of high performance plasmas. Improvements of the gyrotron and development of advanced operation techniques are keys to extend the ECH pulse. A difficulty in the pulse extension was to keep the oscillation condition against decreasing collector current because of cathode cooling due to continuous electron emission. The techniques of controlling heater current and anode voltage during the pulse developed by FY2004 [2.5-1] were refined and pulse duration of 17 s at 0.4 MW (at gyrotron) has been achieved.

The mechanism of this control is regarded as follows; the increase in heater current is a direct method to compensate the cathode temperature drop, and the change in anode voltage changes the oscillation condition by modifying the electron pitch angle. As an advanced feature of the real time heater current and anode voltage control, automatic recovery from the oscillation termination was also achieved. The termination was detected from the voltage signal from the directional coupler and the diode detector, then the anode voltage was increased by 2.2 kV and the oscillation successfully recovered as shown in Fig. I.2.5-1.

It is important to estimate the power of injected millimeter waves for the ECH system. However, power measurement by a dummy load, used as a basic and common power measurement method, assumes reproducibility and stability of the gyrotron oscillation. A model calculation showed that the disk edge temperature of the diamond vacuum window (diameter: 60 mm, thickness: 1.72 mm) in the waveguide (inner diameter: 31.75 mm) gap was sufficient to estimate the transmission power at 1 MW and 110 GHz with a response time of ≈0.2 s, because of the high thermal conductivity of diamond. This suggests that quasi-real-time power measurement can be achieved using a high response thermometer such as a very thin thermocouple or an infrared radiation thermometer. The initial high power test with a thermocouple (φ = 0.5 mm) demonstrated successful power measurement for ≈1 MW, 4 s pulses with response time of < 1 s as shown in Fig. I.2.5-2.

2.5.2 Operation and R&D of the LH System

The performance of the modified launcher with the developed carbon grills showed sufficient abilities as a high power LH launcher, for instance, moderate current drive efficiency [2.5-2]. For the modified LH launcher,
the technical key issue was to obtain sufficient electrical contact along the carbon grills, even though for this purpose a thin RF contactor made of copper was inserted between the base frame and the carbon grill mouth. After large energy injection such as ~16 MJ, the carbon grills seemed to be of integrity, however, severe damages were observed around a few base frames by RF breakdown due to insufficient electrical contact and low responses of the arc monitor system to protect them against RF breakdown in the LH launcher. Therefore, at first the arc monitor system was improved such as re-installation of the checking lamps that clearly check whether the protection system works well or not. Next, the eight carbon grills were removed from the base frames welded with the LH launcher, and these base frames were repaired smoothly. Unfortunately, two base frames were so injured that high RF power could not be injected. Conditioning of the LH launcher through the six base frames was performed with plasma by using the power-modulated injection method like as discontinued injection of 50ms-on/10ms-off. The conditioning has progressed up to ~1.5 MW and/or ~9.3 MJ, as shown in Fig. I.2.5-3. Moreover, the real time current profile control by LH injection was successfully demonstrated via real-time adjustment of input power and phase difference with monitoring current profile estimated with MSE measurement.

In order to improve insufficient electrical contact along the carbon grill, a new carbon grill has been developed as shown in Fig. I.2.5-4. The four-divided (4-div.) grill made of graphite is joined with the 4-div. pedestal by a “diffusion bonding method”. In this new carbon grill, the position of electrical contact is between the 4-div. pedestal made of stainless steel and the base frame. Enough electrical contact is expected because pressing is stronger than the former type. This new carbon grill shows enough power capability of ~500 kW even in short time. Up to now, high power of 300 kW - 10 s can be transmitted without heavy RF breakdown.

Fig. I.2.5-4 Overview of the new carbon grill.

2.6 Diagnostics Systems

2.6.1 High-Repetition CO\textsubscript{2} Laser for Collective Thomson Scattering Diagnostic [2.6-1]

A diagnostic of fusion-generated alpha particles is important for understanding of their contribution to plasma heating and plasma instabilities. However, the effective and reliable measurement method has not yet been established.

To establish a diagnostic method of confined \(\alpha\)-particles in burning plasmas, a high-repetition and high-energy Transversely Excited Atmospheric (TEA) carbon dioxide (CO\textsubscript{2}) laser (Fig. I.2.6-1) for a collective Thomson scattering (CTS) diagnostic has been developed. To excite a single-transverse and
2.6.2 Density Fluctuation Measurement Using Motional Stark Effect Optics [2.6-2]

The motional Stark effect (MSE) diagnostic system has been modified to work as a beam emission spectroscopic (BES) diagnostic. By fast sampling (0.5-1MHz) of the photo-multiplier signals, the system can simultaneously measure density fluctuation in addition to the pitch angle of the magnetic field. In the core single longitudinal mode, the laser has an unstable resonator with a cavity length of ~4.4m and continuous wave seed laser is injected. Pulse energy of 10J with a repetition rate of 10Hz has been achieved in the single-mode operation. The beam size is 40mm in diameter. Pulse energy of 18J with a repetition rate of 10 Hz and 36J with single shot operation has also been achieved in the multimode operation. These results give an outlook for the CTS diagnostic on ITER, which requires single-mode energy of 20J with a repetition rate of 40Hz. A proof-of-principle test will be performed with the improved laser system on JT-60U.

2.6.3 Neutron Detector with Fast Digital Signal Processor [2.6-3]

Neutron emission profiles are routinely measured and used for transport studies of energetic ions. In order to measure neutrons effectively in the mixed neutron and gamma-ray field, Stilbene neutron detectors (SNDs) have been used. The SND combines a Stilbene crystal scintillation detector (SD) with a neutron-gamma pulse shape discrimination (PSD) circuit to select only neutron events. Although the SND has many advantages as a neutron detector, the maximum count rate is limited up to ~1×10⁶ counts/s due to pile up effect in the analog PSD circuit. Under this situation, it is difficult to investigate transport of energetic ions due to MHD instabilities such as Alfvén Eigenmodes with frequency of ~MHz range.

To overcome this issue, a digital signal processing system (DSPS) using a Flash ADC (Acqiris DC252, 8 GHz, 10bit) has been developed at Cyclotron and Radioisotope Center in Tohoku University. In this system anode signals from the photomultiplier of the SD are directory stored and digitized sequentially. Then, neutron-gamma PSD is performed using software. This system allows neutron measurements with a high counting rate of >1×10⁶ counts/s. Good neutron-gamma
discrimination of this system was verified by performance tests using neutron-gamma sources. Then, it has been installed in the center channel of the vertical neutron collimator system in JT-60U and applied to deuterium experiments. As a result, it is confirmed that the PSD is sufficiently performed and collimated neutron flux are successfully measured with a count rate up to \(5 \times 10^5 \) counts/s without pile up of detected pulses. Thus, the performance of the DSPS as a neutron detector, which supersedes the SND, is demonstrated.

2.6.4 Data Processing System [2.6-4]

In order to meet demands for the advanced diagnostics, the JT-60 data processing system (DPS) has been modified from a three-level hierarchy system to a two-level hierarchy system. The old DPS had a mainframe computer at the top level of the hierarchy. The mainframe computer communicated with the JT-60 supervisory control system and supervised internal communication inside the DPS. The middle level of the hierarchy had minicomputers, and the bottom level had individual diagnostic subsystems. The mainframe computer at the top level limited the total performance of the DPS. The new DPS is a decentralized data processing system using UNIX-based workstations and network technology. The configuration of the new DPS is shown in Fig. 1.2.6-3. The mainframe computer was replaced with a UNIX-based workstation. All the computers in the middle level of the hierarchy are now UNIX-based workstations. The new DPS started operation in October 2005.

References

II. THEORY AND ANALYSIS

Much progress was made in confinement, transport and MHD researches, such as beta dependence of ELMy H-mode confinement, ITB in reversed shear plasma, aspect ratio effect on external MHD modes and magnetic island evolution in rotating plasma. Integrated simulation code for burning plasma analysis is being developed and validated by fundamental researches of JT-60U experiments. Progress has been made in the NEXT project to investigate complex physical processes in MHD and transport phenomena. The behaviors of the collisionless MHD modes in high temperature plasmas, and the effect of MHD modes on current hole formation were shown. The dynamics of the zonal flows and geodesic acoustic modes (GAMs) were understood in reversed shear configuration and a new gyrokinetic Vlasov code was developed. Cross section data for atomic and molecular collisions and spectral data relevant to fusion research have been compiled and produced.

1. Confinement and Transport

1.1 Origin of the Various Beta Dependence of ELMy H-mode Confinement

Dependence of the energy confinement in ELMy H-mode tokamak on the beta has been investigated for a long time, but a common conclusion has not been obtained so far. Recent non-dimensional transport experiments in JT-60U demonstrated clearly the beta degradation. A database for JT-60U ELMy H-mode confinement was assembled. Analysis of this database is carried out, and the strong beta degradation consistent with above experiments is confirmed. Two subsets of ASDEX Upgrade and JET data in the ITPA H-mode confinement database are analyzed to find the origin of the various beta dependences. The shaping of the plasma cross section, as well as the fuelling condition, affects the confinement performance. The beta dependence is not identical for different devices and conditions. The shaping effect, as well as the fuelling effect, is a possible candidate to cause the variation of beta dependence. [1.1-1]

Reference

1.2 Internal Transport Barriers in JT-60U Reversed-Shear Plasmas

Physics of strong internal transport barriers (ITBs) in JT-60U reversed-shear (RS) plasmas has been studied through the modeling on the 1.5 dimensional transport simulation. Key physics to produce two scalings on the basis of the JT-60U box-type ITB database are identified. Figure II.1.2-1 shows the ITB width, \(\Delta_{\text{ITB}} \), as a function of the ion poloidal gyroradius at the ITB centre, \(\rho_{\text{p,ITB}} \). The standard model reproduces the JT-60U scaling (\(\Delta_{\text{ITB}} \sim 1.5 \rho_{\text{p,ITB}} \)), while other models do not. As a result, as for the scaling for the narrow ITB width proportional to the ion poloidal gyroradius, the following three physics are important: (1) the sharp reduction of the anomalous transport below the neoclassical level in the RS region, (2) the autonomous formation of pressure and current profiles through the neoclassical transport and the bootstrap current, and (3) the large difference between the neoclassical transport and the anomalous transport in the normal-shear region.

As for the scaling for the energy confinement inside ITB (\(\varepsilon \beta_{\text{p,core}} < 0.25 \)) where \(\varepsilon \) is the inverse aspect ratio at the ITB foot and \(\beta_{\text{p,core}} \) is the core poloidal beta value), the value of 0.25 is found to be a saturation value due to the MHD equilibrium. The value of \(\varepsilon \beta_{\text{p,core}} \) reaches the saturation value, when the box-type ITB is formed in the strong RS plasma with the large asymmetry of the poloidal magnetic field, regardless of details of the transport and the non-inductively driven current [1.2-1].

Fig. II.1.2-1 shows \(\Delta_{\text{ITB}} \) versus \(\rho_{\text{p,ITB}} \) for several types of models. Standard model (\(\bullet \)) is modified so that neoclassical transport is replaced by gyro-Bohm type (\(\Delta \)), anomalous transport is reduced even in normal-shear region (\(\bigcirc \)), and current profile with weakly-reversed-shear is fixed (\(\bigotimes \)). Solid line denotes JT-60 scaling.

Reference

2. MHD Stability

2.1 Aspect Ratio Effect on the Stability of the External MHD Mode in Tokamaks

The formulation for solving numerically the two-dimensional Newcomb equation is extended to calculate the vacuum energy integral. This extension realizes the stability analysis of ideal external MHD modes from low to high toroidal mode numbers. According to this extension, an effect of the aspect ratio on the achievable normalized plasma pressure (β_N), restricted by ideal external MHD modes whose toroidal mode number is from 1 to 10, is studied. Figure II.2.1-1 shows the decrease of the aspect ratio improves the achievable β_N value, and increases the toroidal mode number of the external mode restricting the achievable β_N when the conducting wall is placed close to the plasma surface. This aspect ratio effect is confirmed when the safety factor at the plasma surface is between 4 and 5. These represent the importance of the stability of external MHD modes whose toroidal mode number is larger than 3 to determine the achievable β_N.

Reference

2.2 Role of Anomalous Transport in Neoclassical Tearing Modes

Role of anomalous transport in onset and evolution of neoclassical tearing modes (NTMs) is investigated. A key role in the evolution NTMs belongs to the radial profiles of the perturbed plasma flow, temperature and density which are determined by the conjunction of the longitudinal and cross-field transport. The influence of anomalous perpendicular heat transport and anomalous ion perpendicular viscosity on early stages of NTM evolution are studied.

Several parallel transport mechanisms competitive with anomalous cross-island heat transport in the formation of the perturbed electron and ion temperature profiles within the island are considered. The partial contributions from the plasma electron and ion temperature perturbations in the bootstrap drive of the mode and magnetic curvature effect were taken into account in construction of a generalized transport threshold model of NTMs. This model gives more favourable predictions for NTM stability and qualitatively modifies the scaling law for β_{onset}. The anomalous perpendicular ion viscosity is shown to modify the collisionality dependence of the polarization current effect, reducing it to the low collisionality limit. In its turn a viscous contribution to the bootstrap drive of NTMs is found to be of the same order as a conventional bootstrap drive for the islands of width close to the characteristic one of the transport threshold model. A viscous contribution to the perturbed bootstrap current is destabilizing for the island rotating in the ion diamagnetic drift direction [2.2-1].

Reference

2.3 Magnetic Island Evolution in Rotating Plasma

It has been well understood that, in tokamak plasmas, magnetic islands resonant with the low q rational surface deteriorate the plasma confinement. Hence, the suppression and control of the magnetic islands is an urgent subject in a tokamak fusion research. Thus, the time evolution of the magnetic island formed at the tearing stable rational surface by the external magnetic flux perturbation in the plasma with poloidal flow is investigated numerically by using the resistive MHD model. It was found that the magnetic island growth phase is divided into four phases, 1) flow-suppressed phase, 2) rapid growth phase, 3) transient phase, and 4) Rutherford type phase. It was also found that the onset condition of this rapid growth depends on the resistivity, but does not much depend on the viscosity. On the other hand, the time constant of the rapid growth phase is almost independent on both the plasma resistivity and the viscosity. After the rapid growth phase, the island enters a transient phase, which becomes clear in the low resistivity regime. Then, the magnetic island grows slowly. This phase seems to be the Rutherford type phase [2.3-1].

Reference
2.3-1 Ishii, Y., et al., "Magnetic Island Evolution in Rotating Plasmas," to be published in J. Plasma Phys..

2.4 Mechanism of Rotational Stabilization of High-n Ballooning Modes

It has been clarified that ballooning modes in a shear toroidal rotating tokamak are stabilized by a countably infinite number of crossings among eigenvalues associated with ballooning modes in a static plasma. It was also found that the crossings cause energy transfer from an unstable mode to the infinite number of stable modes; such transfer works as the stabilization mechanism of the ballooning mode [2.4-1]. The method used in this research has been further explored from the viewpoint of regularization of singular eigenfunctions of operators encountered often in plasma physics [2.4-2]. It has been confirmed that the set of regularized eigenfunctions does capture the transient behavior of the original equations of motion with singular operator for a finite time. Thus, this method will resolves the practical difficulties in analyzing various MHD phenomena with continuous spectra in tokamak plasmas.

References
3. Integrated Simulation

3.1 Integrated Simulation Code for Burning Plasma Analysis

Strategy of integrated modeling for burning plasmas in Japan Atomic Energy Agency is as follows: In order to simulate the burning plasma which has a complex feature with wide time and spatial scales, a simulation code cluster based on the transport code TOPICS is being developed by the integration with heating and current drive, the impurity transport, edge pedestal model, divertor model, MHD and high energy behavior model. Developed integration models are validated by fundamental researches of JT-60U experiments and the simulation based on the first principle in our strategy.

The integration of MHD stability and the transport is progressed for three phenomena with different time scale of NTMs (\(\tau_{\text{NTM}} \approx 10^2 \tau_R \)), beta limits (\(\tau_{\text{Alfven}} \)) and ELMs (intermittent of \(\tau_E \) and \(\tau_{\text{Alfven}} \)). Here, \(\tau_R \), \(\tau_{\text{Alfven}} \) and \(\tau_E \) are the resistive skin time, the Alfven transit time and the energy confinement time, respectively. Integrated model of the NTM is produced by coupling the modified Rutherford equation with the transport equation. Integrated model of beta limits is developed by the low-n stability analysis of down streaming data from the TOPICS code. Integrated model of ELM is developed by the iterative calculation of the ideal MHD stability code MARG2D and the TOPICS code. These models are being validated by the data of JT-60 experiments and estimate the plasma performance for burning plasmas.

3.2 Development of Integrated SOL/Divertor code and Simulation Study

An integrated SOL/divertor code is being developed by the JAEA for interpretation and prediction studies of the behavior of plasmas, neutrals, and impurities in the SOL/divertor region [3.2-1]. A code system consists of the 2D fluid code for plasma (SOLDOR), the neutral Monte-Carlo code (NEUT2D), the impurity Monte-Carlo code (IMPMC), and the particle simulation code (PARASOL) as shown in Fig. II.3.2-1. The physical processes of neutrals and impurities are studied using the Monte Carlo (MC) code to accomplish highly accurate simulations. The so-called divertor code, SOLDOR/NEUT2D, has the following features: 1) a high-resolution oscillation-free scheme for solving fluid equations, 2) neutral transport calculation under the condition of fine meshes, 3) successful reduction of MC noise, and 4) optimization of the massive parallel computer. As a result, our code can obtain a steady state solution within 3 ~ 4 hours even in the first run of a series of simulations, allowing the performance of an effective parameter survey. The simulation reproduces the X-point MARFE in the JT-60U. It is found that the chemically sputtered carbon at the dome causes radiation peaking near the X-point. The performance of divertor pumping in the JT-60U is evaluated based on particle balances. In regard to the design of NCT (National Centralized Tokamak, renaming to the JT-60SA Satellite Tokamak at present) divertor [3.2-1, 3.2-2], the simulation indicates that pumping efficiency is determined by the balance between the incident and back-flow fluxes into and from the exhaust chamber, which depends on the divertor geometry and operational conditions.

![Fig. II.3.2-1 Development of SOL/divertor codes and integration in the JAEA [3.2-1].](Image)

References

3.3 Transient Behaviour of SOL-Divertor Plasmas after an ELM Crash

Enhanced heat flux to the divertor plates after an ELM crash in H-mode plasmas is a crucial issue for the tokamak reactor. Characteristic time of this heat flux is one of key factors of the influence on the plate. We investigate the transient behavior of SOL-divertor plasmas after an ELM crash with the use of a one-dimensional particle simulation code, PARASOL.
Influence of the collisionality and the recycling rate on characteristic times of the fast-time-scale response and of the slow-time-scale response are examined. The fast time scale is further classified into the supra-thermal-electron transit time scale and the thermal-electron-transit time scale. Supra-thermal electrons supplied by an ELM crash induce the large electron heat flux Q_e and the high sheath potential ϕ at the plate soon after the crash, while the time scale of electron temperature T_e is governed by the thermal electrons. Extremely large heat transmission factor and higher ϕ are observed in the low collisionality regime. In the higher collisionality regime, supra-thermal electrons are thermalized and the value of ϕ becomes proportional to T_e as usual. On the other hand, the slow-time-scale characteristic time is governed by the sound speed in the central SOL region, and is insensitive to the collisionality compared with the fast-time-scale one. The slow-time-scale phenomena are affected by the recycling condition in contrast to fast-time-scale behaviors being independent of the recycling. Peaks of particle and heat fluxes, Γ and Q, are delayed by the increase of recycling rate, though the arrival times of Γ and Q are not changed. Large recycling after the arrival of the enhanced Γ makes the flow speed small in the central SOL region, and the peaks are forced to be delayed. [3.3-1]

Reference

4. Numerical Experiment of Tokamak (NEXT)

4.1 Nonlinear Behaviors of Collisionless Double Tearing and Kink Modes

In high temperature plasmas, the collisionless effects such as the electron inertia and the electron parallel compressibility become important for the magnetic reconnection in MHD modes. Thus, the behaviors of collisionless MHD modes were investigated by gyrokinetic particle simulations. The collisionless double tearing mode (DTM) grows at the Alfvén time scale due to the electron inertia, and nonlinearly induces the internal collapse when the helical flux at the magnetic axis is less than that at the outer resonant surface. It was found that, after the internal collapse, the secondary reconnection is induced by the current concentration due to the convective flow, and a new reversed shear configuration with resonant surfaces can be generated [4.1-1]. The collisionless internal kink mode was also studied in the parameter region where the effects of electron inertia and electron parallel compressibility are competitive for magnetic reconnection. Although the linear growth of the mode is dominated by the electron inertia, it was found that the growth rate can be nonlinearly accelerated due to the electron parallel compressibility proportional to the ion sound Larmor radius. The acceleration of growth is also observed in the nonlinear phase of the DTM [4.1-2].

References

4.2 Stability of Double Tearing Mode and its Effects on Current Hole Formation

In tokamak plasmas with negative central current density, so called the current hole formation can be explained by the destabilization of $m=1/n=0$ resistive kink MHD mode. Here, a strong reversed magnetic shear configuration has two resonant surfaces for low mode numbers, thus DTM could become unstable before the hole formation. However, it was found that the stability of the resistive kink mode, so that the current density gradient to drive the mode, does not change much after a crash by DTM, although the current profile is flatten near the minimum safety factor region [4.2-1].
After a formation of the hole, no MHD activity identified to DTM was observed in experiments, and a resultant profile with two resonant surfaces could have a good stability for DTM. It was also found that the current profile with a strong peak around an inner resonant surface, as shown in Fig.II.4.2-1, is stable for DTM [4.2-2].

Fig. II.4.2-1 An example of stabilized current density \(j \) and safety factor \(q \) profiles. When a position of a current peak is shifted to an inner resonant surface for \(m/n=5/1 \) DTM, DTM becomes to be stable, where \(m \) and \(n \) are a poloidal and toroidal mode number, respectively.

References

4.3 ZF/GAM Dynamics and Ion Turbulent Transport in Reversed Shear Tokamaks
Zonal flow behavior and its effect on turbulent transport in reversed magnetic tokamak plasmas were investigated by global simulations of electrostatic ion temperature gradient driven turbulence. In a high safety factor case (\(q_0=2.2 \)), Fig.II.4.3-1 shows that turbulent heat transport is high in a broad radial region because oscillatory zonal flows or GAMs are dominant. When \(q_0 \) is reduced from 2.2 to 1.8 with keeping the other parameters unchanged, zonal flows change from the GAMs to stationary flows in the region around the minimum q surface. As a result of the change in zonal flow behavior, the ion thermal diffusivity is reduced, as shown in Fig.II.4.3-1. This result indicates that the change of zonal flow behavior may trigger the formation of ion transport barriers in the minimum q region.

Fig. II.4.3-1 Radial profiles of the safety factor \(q=q_0(3(r/a)^2+4(r/a)) \) for (a) \(q_0=2.2 \), (b) \(q_0=2.0 \), and (c) \(q_0=1.8 \) (top), and the normalized ion thermal diffusivity \(\chi \) (bottom).

Reference
4.3-1 Miyato, N., et al., "Zonal Flow and GAM Dynamics and Associated Transport Characteristics in Reversed Shear Tokamaks," to be published in J. Plasma Phys..

4.4 Development of Gyrokinetic Vlasov CIP Code
A gyrokinetic simulation is an essential tool to study anomalous turbulent transport in tokamak plasmas. Although the \(\delta \) Particle-In-Cell (PIC) method enabled an accurate gyrokinetic simulation of small amplitude turbulent fluctuations with \(\sim 1\% \), the method has a difficulty in implementing non-conservative effects such as heat and particle sources and collisions which are essential in realistic long time turbulence simulations. To overcome the difficulty, a new gyrokinetic Vlasov code has been developed using the Constrained-Interpolation-Profile (CIP) method. The code is numerically stable and numerical oscillations, which have been a critical issue in the previous Vlasov simulations, are quite small. In the benchmark tests of ion temperature gradient driven
(ITG) turbulence simulations, the linear growth rates, the nonlinear saturation levels, the zonal flow structures, and the conservation properties are almost the same between the PIC and CIP codes. In addition, computational costs are almost comparable between two codes. A possibility of a long time turbulence simulation was demonstrated from the viewpoints of numerical properties and a computational cost.

Fig. II.4.4-1 The radial-poloidal contour plots of f observed in the nonlinear quasi-steady phase of the ITG turbulence simulations with CIP (left) and PIC (right) codes. Both results show similar zonal flow patterns.

Reference

5. Atomic and Molecular Data

We have been compiling and producing cross section data for atomic and molecular collisions and spectral data relevant to fusion research [5-1].

Cross sections for 74 processes in collisions of electrons with N$_2$ and N$_2^+$ have been compiled [5-2]. In tokamak fusion research, N$_2$ gas has been injected for heat control. The cross sections are plotted as a function of the electron collision energy, and recommended cross sections are expressed by analytic expressions to facilitate practical use of the data. Figure II.5-1 shows an example of the compiled cross section data. The data have been included in Japanese Evaluated Atomic and Molecular Data Library (JEAMDL), which is available through the Web at the URL http://www-jt60.naka.jae.go.jp/english/JEAMDL/index.html. As to the data production, cross sections for various carbon containing molecules, which are produced from carbon-based plasma-facing materials, have been measured [5-3,4]. Charge transfer cross sections of impurity ions produced from the plasma-facing materials: Be, B, C, Cr, Fe and Ni ions, with gaseous atoms and molecules have also been measured [5-5]. Cross sections of state-selective electron capture in collisions of C$^+$ ions with H* (n=2) atoms have been calculated using a molecular-bases close-coupling method [5-6].

Fig. II.5-1 Cross sections of excitation to $\Lambda^3\Sigma_u^+$ for N$_2$ molecule. The data points indicate the measured cross sections, and the curve indicates an analytical fitting.
Regarding spectral data, wavelengths, energy levels, oscillator strengths, transition probabilities and ionization energies have been critically compiled for tungsten [5-7, 5-8] and gallium [5-9]. Tungsten is one of the candidate plasma-facing materials for future fusion devices, and gallium is a candidate material for liquid divertors.

References
5-1 Kubo, H., et al., "Atomic and Molecular Data Activities for Fusion Research at JAERI," to be published in J. Plasma Fusion Res..
III. FUSION REACTOR DESIGN STUDY

1. Conceptual Design of DEMO Reactor

Fusion DEMO plant is requested to demonstrate 1) an electric power generation of 1GW level, 2) self-sufficiency of T fuel, 3) year-long continuous operation. From the economical aspect, the reactor size should be as compact as ITER. To meet these requirements, a DEMO reactor concept named SlimCS was proposed in 2005 [1-1].

SlimCS produces a fusion output of 2.95GW with a major radius of 5.5m, aspect ratio (A) of 2.6, normalized beta (β_N) of 4.3 and maximum field of 16.4T. The conceptual view is depicted in Fig.III.1-1. It is expected that the zero output at the sending end is obtained at $\beta_N = 2$, $n/n_{GW} = 0.4$ and $f_{BS} = 0.35$ and that a step-by-step power-up eventually attains 1GWe output at $\beta_N = 4.3$, $n/n_{GW} = 1.1$ and $f_{BS} = 0.77$, where n/n_{GW} and f_{BS} are the line-averaged electron density against the Greenwald density and the bootstrap fraction, respectively. SlimCS uses technologies foreseeable in 2020's such as Nb$_3$Al superconductor, water-cooled solid breeder blanket, low activation ferritic steel F82H as the blanket structural material, and tungsten monoblock divertor plate. Neutron wall load is designed at 3MW/m2. Divertor heat flux, which can be a critical issue for such a compact reactor, is mitigated to 10MW/m2 at the peak by small inclination (15º) of divertor plates and flux expansion in the divertor region.

SlimCS can be as compact as advanced commercial reactor designs such as ARIES-RS and CREST (Fig.III.1-2), even with the assumption of relatively conservative plasma parameters. This is because such a low-A plasma, being stable for higher elongation (κ), can have higher n_{GW} and β_N limits. Another merit of low-A is that the first wall area on the low field side, where smaller electromagnetic (EM) force acts on disruptions, is wide compared with that of conventional-A. This means that tritium can be efficiently bred with large blanket modules on the low field side. As a result, the demand for tritium breeding on the high field side is comparatively reduced so that small blanket modules, being robust to stronger EM force but less efficient for tritium breeding, can be arranged on the side.

![Fig. III.1-1 Conceptual view of SlimCS.](image1)

![Fig. III.1-2 Comparison of major radius and reactor weight for various fusion reactors.](image2)

Reference

2. Non-Inductive Current Ramp Simulation

From the practical control aspect of a compact, CS-free tokamak reactor concept "VECTOR", a fully non-inductive, very slow current buildup scenario were investigated via a consistent simulation using Tokamak Simulation Code [2-1, 2-2, 2-3]. The L-mode based, improved core confinement transport model, e.g. current diffusive ballooning mode (CDBM), has clarified detailed dynamics of the stable formation of the internal transport barrier (ITB) by non-inductive means of off-axis current sources. First, in accordance with the strong ITB formation, the bootstrap (BS) current was confirmed to substantially increase by more than $f_{th} > 50\%$ and to enhance the current buildup efficiency, saving a great deal of the driving power of the non-inductive current sources. Second, the integrated, non-inductive scenario was shown to meet the following control and physics requirements set by (a) plasma shaping compatible with recharging of the coil currents, (b) available NB-heating power, (c) avoidance of Current Hole formation under over driving, non-inductive current sources, (d) reasonable HH factor $= t_{fs}/t_{fcs} < 1.3$ and (e) allowable Greenwald density limit of $n < n_{GW}$. Third, a safe plasma takeoff from limiter to divertor configuration, as well as a safe landing to limiter structures at discharge termination, was also demonstrated. Furthermore, a new operation scenario was computationally examined to control the ITB structure by means of small, but long-duration perturbation (~ 80sec in reactor plasmas) of negative or positive inductive current sources. Thus, the q-profile was first shown to undergo a drastic change over a wide range from positive to negative magnetic shear configuration, and vice versa.

3. Study of Advanced Shield Materials

In general, a hydrogen-rich material has the potential to be an effective neutron shield because the contained hydrogen nuclei work as a moderator of fast neutrons, reducing the fast neutron flux. It is notable that some hydrides have a considerably higher hydrogen content than polyethylene, water and solid hydrogen. The material that we have focused attention on is borohydrides which has been developed for a fuel cell [3-1]. The anticipated hydrogen concentration of Mg(BH$_4$)$_2$, which will probably be a new candidate shielding material, is as high as 1.32x1023 H-atoms/cm3, surpassing those of already known VH$_2$ (1.05x1023 H-atoms/cm3) and TiH$_2$ (9.1x1022 H-atoms/cm3).

In order to assess capability of such hydrides as a advanced shield material, neutronics calculation was carried out for the SlimCS design [3-2]. In the design, the shields are located on the inboard and outboard sides, and originally they were designed to be 30 and 70cm in thickness, respectively, using steel-and-water. When the steel-and-water is replaced with steel-and-hydride, it was found that Mg(BH$_4$)$_2$, TiH$_2$ and ZrH$_2$ could reduce the thickness of the outboard shield by 23, 20 and 19%, respectively. When Mg(BH$_4$)$_2$ is mixed with ferritic steel (F82H) at the ratio of 1:1, the gamma-ray flux is reduced to 1/300 compared with that for pure Mg(BH$_4$)$_2$. These results indicates that borohydrides in combination with steel can work as an attractive shield material for fusion.

References

References

A.1 Publication List (April 2005 – March 2006)

A.1.1 List of JAERI/JAEA Report

A.1.2 List of papers published in journals

23) Ikeda Y., the NBI group, the NCT Design Team, “Progress of Neutral Beam Injection System on JT-60U for Long Pulse Operation,” Proc. 5th General Scientific Assembly of Asia Plasma and Fusion Association (2005), to be published in J. Korea Phy. Soc.

84) Suzuki, S., Akiba, M., “Materials and Design Interface of In-Vessel Components for Fusion Reactors,” 12th Int. Conf. on Fusion Reactor Materials (2005), to be published in J. Nucl. Mater..

92) Tanigawa, H., Sokolov, M.A., Klueh, R.L., “Microstructural Inhomogeneity of Reduced-Activation Ferritic/Martensitic Steel,” 12th Int. Conf. on Fusion Reactor Materials (2005), to be published in J. Nucl. Mater..

A.1.4 List of other papers

A.2 Organization

A.2.1 Organization of Naka Fusion Research Establishment

(As of September 30, 2005)

Director General

Department of Administrative Services
- Administrative Services Division
 - Accounts Division
 - Utilities and Maintenance Division
 - Safety Division
- Tokamak Program Division
- Large Tokamak Collaboration Research Division
- Plasma Analysis Division
- Large Tokamak Experiment and Diagnostics Division
- Plasma Theory Laboratory
- Experimental Plasma Physics Laboratory
- Reactor System Laboratory

Department of Fusion Plasma Research

Department of Fusion Facilities
- JT-60 Administration Division
- JT-60 Facilities Division I
- JT-60 Facilities Division II
- RF Facilities Division
- NBI Facilities Division

Department of Fusion Engineering Research
- Development Team for Practical Use of Fusion Related Advanced Technology
- Blanket Engineering Laboratory
- Superconducting Magnet Laboratory
- Plasma Heating Laboratory
- Tritium Engineering Laboratory
- Office of Fusion Materials Research Promotion
- Fusion Neutronics Laboratory
- Blanket Irradiation and Analysis Laboratory

Department of ITER Project
- Project Management Division
- International Coordination Division
- Plant System Division
- Tokamak Device Division
- Safety Design Division
A.2.2 Organization of Fusion Research and Development Directorate

(As of March 31, 2006)

<table>
<thead>
<tr>
<th>Director General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of Advanced Plasma Research</td>
</tr>
<tr>
<td>Research and Development Co-ordination and Promotion Office</td>
</tr>
<tr>
<td>ITER Project Promotion Group</td>
</tr>
<tr>
<td>Broader Approach Promotion Group</td>
</tr>
<tr>
<td>Research Coordination Group</td>
</tr>
<tr>
<td>JT-60 Advanced Program Group</td>
</tr>
<tr>
<td>Collaborative Research Group</td>
</tr>
<tr>
<td>Tokamak Analysis Group</td>
</tr>
<tr>
<td>Tokamak Experimental Group</td>
</tr>
<tr>
<td>Plasma Theory & Simulation Group</td>
</tr>
<tr>
<td>Tokamak Diagnostics Group</td>
</tr>
<tr>
<td>Fusion Reactor Design Group</td>
</tr>
<tr>
<td>Tokamak Control Group</td>
</tr>
<tr>
<td>Tokamak Device Group</td>
</tr>
<tr>
<td>RF Heating Group</td>
</tr>
<tr>
<td>NBI Heating Group</td>
</tr>
<tr>
<td>Division of Tokamak System Technology</td>
</tr>
<tr>
<td>Group of Fusion Advanced Technology for Practical Use</td>
</tr>
<tr>
<td>Blanket Technology Group</td>
</tr>
<tr>
<td>Superconducting Magnet Technology Group</td>
</tr>
<tr>
<td>Plasma Heating Technology Group</td>
</tr>
<tr>
<td>Tritium Technology Group</td>
</tr>
<tr>
<td>Fusion Materials Development Group</td>
</tr>
<tr>
<td>Fusion Neutronics Group</td>
</tr>
<tr>
<td>Blanket Irradiation and Analysis Group</td>
</tr>
<tr>
<td>Division of ITER Project</td>
</tr>
<tr>
<td>ITER Project Management Group</td>
</tr>
<tr>
<td>ITER International Coordination Group</td>
</tr>
<tr>
<td>ITER Plant System Group</td>
</tr>
<tr>
<td>ITER Tokamak Device Group</td>
</tr>
<tr>
<td>ITER Safety Design Group</td>
</tr>
</tbody>
</table>

For more information on JAEA organization, please see the following URL:

http://www.jaea.go.jp/english/01/1_5.shtml
A.3 Personnel Data
A.3.1 Scientific Staff in the Naka Fusion Research Establishment of JAERI
(April 2005 - September 2005)

Naka Fusion Research Establishment
SEKI Masahiro (Director General)
SHIMOMURA Yasuo (Scientific Consultant)
MATSUI Hideki (Invited Researcher)
KOHYAMA Akira (Invited Researcher)
IDA Katsumi (Invited Researcher)
KISHIMOTO Yasuaki (Invited Researcher)
USHIGUSA Kenkichi (Staff for Director General)
ISEI Nobuaki (Staff for Director General)
OOHARA Hiroshi (Staff for Director General)

Department of Fusion Plasma Research
NINOMIYA Hiromasa (Director)
KIKUCHI Mitsuru (Deputy Director)
NAGAMI Masayuki (Prime Scientist)
TANI Keiji
TERAKADO Yuichi (Administrative Manager)

Tokamak Program Division
MIURA Yukitoshi (General Manager)
ANDO Toshinari (*18) FUJITA Takaaki HATAE Takaki
KURIHARA Ryoichi KURITA Gen-ichi MATSUMURA Hiroshi (*2)
MORI Katsuharu (*7) MORIOKA Atsuhiko OGURI Shigeru (*7)
OIKAWA Akira SAKURAI Shinji SATO Fujio (*7)
SHIINA Tomio TAMAI Hiroshi TSUCHIYA Katsuhiko
YAMAZAKI Takeshi (*7)

Large Tokamak Collaboration Research Division
MIURA Yukitoshi (General Manager)
KONOSHIMA Shigeru SHINOHARA Kouji

Plasma Analysis Division
OZEKI Takahisa (General Manager)
AIBA Nobuyuki (*21) HAMAMATSU Kiyotaka HAYASHI Nobuhiko
KIYONO Kimihiro KOBAYASHI Masayuki (*23) KONOVALOV Sergei (*6)
NAITO Osamu OHASA Kazumi OSHIMA Takayuki
SAKATA Shinya SATO Minoru SUZUKI Mitsuhiro (*30)
TAKIZUKA Tomonori
<table>
<thead>
<tr>
<th>Large Tokamak Experiment and Diagnostics Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAMADA Yutaka (General Manager)</td>
</tr>
<tr>
<td>ASAKURA Nobuyuki</td>
</tr>
<tr>
<td>HAMANO Takashi (*19)</td>
</tr>
<tr>
<td>IDE Shunsuke</td>
</tr>
<tr>
<td>ISHIKAWA Masao (*21)</td>
</tr>
<tr>
<td>KAWASHIMA Hisato</td>
</tr>
<tr>
<td>KOKUSEN Shigeharu (*18)</td>
</tr>
<tr>
<td>MIYAMOTO Atsushi (*18)</td>
</tr>
<tr>
<td>OYAMA Naoyuki</td>
</tr>
<tr>
<td>SUZUKA Hirotoke</td>
</tr>
<tr>
<td>TAKENAGA Hidenobu</td>
</tr>
<tr>
<td>TSUZUKI Kazuhiro</td>
</tr>
<tr>
<td>YOSHIDA Maiko (*21)</td>
</tr>
<tr>
<td>CHIBA Shinichi</td>
</tr>
<tr>
<td>HAYASHI Toshimitsu (*17)</td>
</tr>
<tr>
<td>INOUE Akira (*19)</td>
</tr>
<tr>
<td>KAMIYA Kensaku</td>
</tr>
<tr>
<td>KITAMURA Shigeru</td>
</tr>
<tr>
<td>KUBO Hirotaka</td>
</tr>
<tr>
<td>MATSUNAGA Go (*21)</td>
</tr>
<tr>
<td>NAGAYA Susumu</td>
</tr>
<tr>
<td>SAKAMOTO Yoshiteru</td>
</tr>
<tr>
<td>TAKECHI Manabu</td>
</tr>
<tr>
<td>UEHARA Kazuya</td>
</tr>
<tr>
<td>FUJIMOTO Kayoko (*21)</td>
</tr>
<tr>
<td>HOSHINO Katsumichi</td>
</tr>
<tr>
<td>ISAYAMA Akihiko</td>
</tr>
<tr>
<td>KASHIWA Yoshitoshi</td>
</tr>
<tr>
<td>KOIDE Yoshihiko</td>
</tr>
<tr>
<td>MATSUNAGA Go (*21)</td>
</tr>
<tr>
<td>NAKANO Tomohide</td>
</tr>
<tr>
<td>SAKUMA Takeshi (*19)</td>
</tr>
<tr>
<td>TAKECHI Manabu</td>
</tr>
<tr>
<td>TSUKAHARA Yoshimitsu</td>
</tr>
<tr>
<td>URANO Hajime</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasma Theory Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>KISHIMOTO Yasuaki (Head)</td>
</tr>
<tr>
<td>IDOMURA Yasuhiro</td>
</tr>
<tr>
<td>MATSUMOTO Taro</td>
</tr>
<tr>
<td>TOKUDA Shinji</td>
</tr>
<tr>
<td>ISHII Yasutomo</td>
</tr>
<tr>
<td>MIYATO Naoaki</td>
</tr>
<tr>
<td>TUDA Takashi</td>
</tr>
<tr>
<td>KAGEI Yasuhiro (*21)</td>
</tr>
<tr>
<td>SUGAHARA Akihiro (*23)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experimental Plasma Physics Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>KUSAMA Yoshinori (Head)</td>
</tr>
<tr>
<td>KASAI Satoshi</td>
</tr>
<tr>
<td>OGAWA Hiroaki</td>
</tr>
<tr>
<td>KAWANO Yasunori</td>
</tr>
<tr>
<td>KONDOH Takashi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reactor System Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOBITA Kenji (Head)</td>
</tr>
<tr>
<td>NAKAMURA Yukiharu</td>
</tr>
<tr>
<td>SONG Yuntao (*4)</td>
</tr>
<tr>
<td>NISHIO Satoshi</td>
</tr>
<tr>
<td>SATO Masayasu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Fusion Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>KURIYAMA Masaaki (Director)</td>
</tr>
<tr>
<td>HOSOGANE Nobuyuki (Deputy Director)</td>
</tr>
<tr>
<td>YAMAMOTO Takumi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JT-60 Administration Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERAKADO Yuichi (General Manager)</td>
</tr>
</tbody>
</table>
JT-60 Facilities Division I
KURIHARA Kenichi (Head)
AKASAKA Hiromi FURUKAWA Hiroshi (*19) HOYOSAHiromi (*8)
KAWAMATA Youichi MATSUOKA Makoto OHMORI Shunzo
OHMORI Yoshikazu OKANO Jun SEIMIYA Munetaka
SHIBATA Kazuyuki (*19) SHIBATA Takatoshi SHIMADA Katsuhiro
SUEOKA Michiharu TAKANO Shoji (*30) TEREAKADO Hiroyuki (*7)
TERAKADO Tsunehisa TOTSUBA Toshiyuki YAMASHITA Yoshiki (*7)
YONEKAWA Izuru

JT-60 Facilities Division II
MIYA Naoyuki (Head)
ARAI Takashi HAGA Saburo (*18) HAYASHI Takao
HIRATSUKA Hajime HONDA Masao ICHIGE Hisashi
ISAKA Masayoshi ISHIMOTO Yuki (*21) KAMINAGA Atsushi
KIZU Kaname MASAKI Kei MATSUZAWA Yukihiro (*18)
MIYO Yasuhiro NISHIYAMA Tomokazu SASAJIMA Tadayuki
SHIBAMA Yusuke SUZUKI Yutaka (*16) TAKAHASHI Ryuki (*2)
UEHARA Toshiaki (*19) YAGISAWA Hiroshi (*2)
YAGYU Jun-ichi YAMAMOTO Masahiro

RF Facilities Division
FUJII Tsuneyuki (Head)
ANNO Katsuto HIRANAI Shinichi HASEGAWA Koichi
IGARASHI Koichi (*18) ISHII Kazuhiro (*19) KIKUCHI Kazuo
MORIYAMA Shinichi SATO Fumiaki (*18) SAWAHATA Masayuki
SEKI Masami SHIMONOKoitsu SHINOZAKI Shin-ichi
SUZUKI Sadaaki TAKAHASHI Masami (*25) TANI Takashi
TERAKADO Masayuki YOKOKURA Kenji

NBI Facilities Division
IKEDA Yoshitaka (Head)
AKINO Noboru EBISAWA Noboru GRISHAM Larry (*22)
HONDA Atsushi KAWAI Mikito KAZAWA Minoru
KIKUCHI Katsumi (*19) KOMATA Masao MOGAKI Kazuhiko
NOTO Katsuya (*18) OHGA Tokumichi OKANO Fuminori
OSHIMA Katsumi (*18) TAKENOUCHI Tadashi (*28) TANAI Yutaka (*19)
UMEDA Naotaka USUI Katsutoshi YAMAZAKI Haruyuki (*2)

Department of Fusion Engineering Research
SEKI Shogo (Director)
TAKATSU Hideyuki (Prime Scientist and Deputy Director)
KATOGI Takeshi (Administrative Manager)
SHIHO Makoto
Development Team for Practical Use of Fusion Related Advanced Technology
ABE Tetsuya (Team Leader)

Blanket Engineering Laboratory
AKIBA Masato (Head)
ENOEDA Mikio EZATO Koichiro HIROSE Takanori
HOMMA Takashi NISHI Hiroshi NOMOTO Yasunobu (*12)
SUZUKI Satoshi TANIGAWA Hisashi TANZAWA Sadamitsu
YOKOYAMA Kenji

Superconducting Magnet Laboratory
OKUNO Kiyoshi (Head)
ABE Kanako (*5) HAMADA Kazuya ISONO Takaaki
KAWANO Katsumi KOIZUMI Norikiyo NABARA Yoshihiro
NAKAJIMA Hideo NUNOYA Yoshihiko OSHIKIRI Masayuki (*19)
SUGIMOTO Makoto TAKANO Katsutoshi (*19) TSUTSUMI Fumiaki (*30)

Plasma Heating Laboratory
SAKAMOTO Keishi (Head)
DAIRAKU Masayuki HANADA Masaya IKEDA Yukiharu
INOUE Takashi KASHIWAGI Mieko KASUGAI Atsushi
KOBAYASHI Noriyuki (*29) KOMORI Shinji (*19) MINAMI Ryutaro (*21)
ODA Yasuhisa (*31) SEKI Takayoshi (*2) TAKAHASHI Koji
TANIGUCHI Masaki TOBARI Naoyuki (*21) WATANABE Kazuhiro

Tritium Engineering Laboratory
YAMANISHI Toshihiko (Head)
HAYASHI Takumi ISOBE Kanetsugu KAWAMURA Yoshinori
KOBAYASHI Kazuhiro LUO Guang-Nan (*6) MIURA Hidenori (*12)
NAKAMURA Hirofumi SHU Wataru SUZUKI Takumi
UZAWA Masayuki (*16) YAMADA Masayuki

Office of Fusion Materials Research Promotion
SUGIMOTO Masayoshi (Head)
ANDO Masami CHIDA Teruo (*3) IDA Mizuho (*5)
MATSUHIRO Kenjiro (*21) NAKAMURA Hiroo NAKAMURA Kazuyuki
TANIGAWA Hiroyasu UMETSU Tomotake (*14) YUTANI Toshiaki (*29)

Fusion Neutron Laboratory
NISHITANI Takeo (Head)
ABE Yuichi KAWABE Masaru (*19) KONDO Keitaro (*20)
KUBOTA Naoyoshi (*21) KUTSUKE Chuzo NAKAO Makoto (*12)
OCHIAI Kentaro OKADA Kouichi (*27) SATO Satoshi
SEKI Masakazu TANAKA Shigeru YAMAUCHI Michinori (*29)

Blanket Irradiation and Analysis Laboratory
HAYASHI Kimio (Head)
HOSHINO Tsuyoshi (*21) ISHIDA Takuya (*19) TSUCHIYA Kunihiako
YAMADA Hirokazu (*12)

Department of ITER Project
TSUNEMATSU Toshihide (Director)
YOSHINO Ryuji (Deputy Director)
TADA Eisuke
MATSUMOTO Hiroyuki (Administrative Manager)
KOIZUMI Koichi ODAJIMA Kazuo SHOJI Teruaki

Project Management Division
MORI Masahiro (General Manager)
ITAMI Kiyoshi SENGOKU Seio SHIMIZU Katsuhiro
SUGIE Tatsuo YOSHIDA Hidetoshi

International Coordination Division
ANDO Toshiro (Head)
HONDA Tsutomu (*29) IIDA Hiromasa IOKI Kimihiro (*16)
KATAOKA Yoshiyuki (*2) MARUYAMA So MORIMOTO Masaaki (*16)
NAGAHAMA Tetsushi (*24) OIKAWA Toshihiro OKADA Hidetoshi (*2)
SAKASAI Akira SATO Kouichi (*30) SHIMADA Michiya
SUGIHARA Masayoshi TAKAHASHI Yoshikazu TERASAWA Atsumi (*15)
YOSHIDA Kiyoshi

Plant System Division
NEYATANI Yuzuru (Head)
KATAOKA Takahiro (*15) NAGAMATSU Nobuhide (*9) OHMORI Junji (*29)
OOHASHI Hironori (*10) SATO Kazuyoshi SEKIYA Shigeki (*14)
TAKAHASHI Hideo (*26) TAMURA Kousaku (*13) YAGENJI Akira (*1)
YAMAMOTO Shin

Tokamak Device Division
SHIBANUMA Kiyoshi (Head)
KAKUDATE Satoshi KITAMURA Kazunori (*29) MOHRI Kensuke (*11)
NAKAHIRA Masataka OBARA Kenjiro TAKEDA Nobukazu
Safety Design Division

O'HIRA Shigeru (Head)
HIGUCHI Masahisa, MARUO Takeshi, TADO Shigeru (*15)
TAKEI Nahoko, TAKEMURA Morio (*11), TSURU Daigo

Collaborating Laboratories

Tokai Research Establishment

Department of Material Science

Research Group for Radiation Effects and Analysis

JITSUKAWA Shiro (Leader)
FUJII Kimio, NAITO Akira, NAKAZAWA Tetsuya
OKUBO Nariaki, SAWAI Tomotsugu, SHIBA Kiyoyuki
TANIFUJI Takaaki, WAKAI Eiichi, YAMADA Reiji
YAMAKI Daiju

Department of Nuclear Energy System

Research Group for Reactor Structural Materials

MIWA Yukio

Neutron Science Research Center

Research Group for Neutron Scattering from Functional Materials

IGAWA Naoki

Research Group for Nanostructure

TAGUCHI Tomitsugu

Center for Proton Accelerator Facilities

Accelerator Group

HIROKI Seiji

Office of Planning

Division of Collaborative Activities

NEMOTO Masahiro

*1 Hazama Corporation
*2 Hitachi, Ltd.
*3 Hitachi Engineering & Services Co., Ltd.
Institute of Plasma Physics, Academia Science (China)
Ishikawajima-Harima Heavy Industries Co., Ltd.

JAERI Fellowship
JP HYTEC Co., Ltd.
Japan EXPert Clone Corp.
Kajima Corporation
Kandenko Co., Ltd.

Kawasaki Heavy Industries, Ltd.
Kawasaki Plant Systems, Ltd.
Konoike Construction Co., Ltd.
Kumagai Gumi Co., Ltd.
Mitsubishi Electric Corporation

Mitsubishi Heavy Industries, Ltd.
NEC Corporation
Nippon Advanced Technology Co., Ltd.
Nuclear Engineering Co., Ltd.
Osaka University

Post-Doctoral Fellow
Princeton Plasma Physics Laboratory (USA)
Research Organization for Information Science & Technology
Shimizu Corporation
Sumitomo Heavy Industries, Ltd.

Taisei Corporation
Tohoku University
Tomoe Shokai Co., Ltd.
Toshiba Corporation
Total Support Systems

University of Tokyo
A.3.2 Scientific Staff in Fusion Research and Development Directorate of JAEA (October 2005 - March 2006)

Fusion Research and Development Directorate

SEKI Masahiro (Director General)
SHIMOMURA Yasuo (Scientific Consultant)
MATSUMI Hideki (Invited Researcher)
KOHYAMA Akira (Invited Researcher)
IDA Katsumi (Invited Researcher)
KISHIMOTO Yasuaki (Invited Researcher)

Research and Development Co-ordination and Promotion Office

SEKI Shogo (General Manager)
GUNJI Masato
KAWASAKI Minoru
MATSUMOTO Hirohiko
TERAKADO Yuichi
SEKI Shogo
KAWASAKI Minoru
MATSUMOTO Hirohiko

ITER Project Promotion Group

OKUMURA Yoshikazu (Leader)
DOI Kenshin
MATSUMOTO Hirohiko

Fusion Research Coordination Group

USHIGUSA Kenkichi (Leader)
ISEI Nobuaki
USHIGUSA Kenkichi

Broader Approach Promotion Group

USHIGUSA Kenkichi (Acting Leader)

Division of Advanced Plasma Research

NINOMIYA Hiromasa (Unit Manager)
KIKUCHI Mitsuru (Senior Principal Researcher)
NAGAMI Masayuki (Supreme Researcher)
TANI Keiji (Senior Principal Researcher)

JT-60 Advanced Program Group

MIURA Yukitoshi (Leader)
ANDO Toshinari (*14)
KURIHARA Ryoichi
MORI Katsuhiro (*5)

FUJITA Takaaki
KURITA Gen-ichi
MORIOKA Atsuhiko
HATAE Takaki
MATSUMURA Hiroshi (*2)
OGURI Shigeru (*5)
OIKAWA Akira SAKURAI Shinji SATO Fujio (*5)
SHIINA Tomio TAMAI Hiroshi TSUCHIYA Katsuhiko
YAMAZAKI Takeshi (*5)

Collaborative Research Group
KIMURA Haruyuki (Leader)
KONOSHIMA Shigeru SHINOHARA Kouji

Tokamak Analysis Group
OZEKI Takahisa (Leader)
AIBA Nobuyuki (*17) HAMAMATSU Kiyotaka HAYASHI Nobuhiko
KIJONO Kimihiro KOBAYASHI Masayuki (*19) NAITO Osamu
OHASA Kazumi OHSHIMA Takayuki SAKATA Shinya
SAITO Minoru SUZUKI Mitsuhiro (*26) TAKIZUKA Tomonori

Tokamak Experimental Group
KAMADA Yutaka (Leader)
ASAKURA Nobuyuki CHIBA Shinichi FUJIMOTO Kayoko (*17)
HAMANO Takashi (*15) HAYASHI Toshimitsu (*13) HOSHINO Katsumichi
IDE Shunsuke INOUE Akira (*15) ISAYAMA Akihiko
ISHIKAWA Masao (*17) KAMIYA Kensaku KASHIWA Yoshitoshi
KAWASHIMA Hisato KITAMURA Shigeru KOIDE Yoshihiko
KOKUSEN Shigeharu (*14) KUBO Hirotaka MATSUNAGA Go(*17)
MIYAMOTO Atsushi (*14) NAKANO Tomohide NAGAYA Susumu
OYAMA Naoyuki SAKAMOTO Yoshiteru SAKUMA Takeshi (*15)
SUNAO Hidenori SUZUKI Takahiro TAKECHI Manabu
TAKENAGA Hidenobu TSUBOTA Naoki (*14) TSUKAHARA Yoshimitsu
TSUTSUMI Kazuyoshi (*14) TSUZUKI Kazuhiro UEHARA Kazuya
URANO Hajime YOSHIDA Maiko (*17)

Plasma Theory & Simulation Group
KISHIMOTO Yasuaki (Leader)
IDOMURA Yasuhiro ISHII Yasutomo KAGEI Yasuhiro
MATSUMOTO Taro MIYATO Naoki SUGAHARA Akihiro (*19)
TOKUDA Shinji TUDA Takashi

Tokamak Diagnostics Group
KUSAMA Yoshinori (Leader)
KASAI Satoshi KAWANO Yasunori KONDOH Takashi
OGAWA Hiroaki

Fusion Reactor Design Group
TOBITA Kenji (Leader)
NAKAMURA Yukiharu NISHIO Satoshi SATO Masayasu
Division of Tokamak System Technology

KURIYAMA Masaaki (Unit Manager)
HOOGANE Nobuyuki (Senior Principal Researcher)
YAMAMOTO Takumi (Senior Principal Researcher)

Tokamak Control Group

KURIHARA Kenichi (Leader)
AKASAKA Hiromi
KAWAMATA Youichi
OKANO Jun
SHIBATA Takatoshi
TAKANO Shoji (*26)
TOTSUKA Toshiyuki
FURUKAWA Hiroshi (*15)
MATSUKAWA Makoto
SEIMIYA Munetaka
SHIMADA Katsuhiko
TERAKADO Hiroyuki (*5)
TERAKADO Tetsutaro
HOSOGAMA Hiromi
OHMORI Yoshikazu
SHIBATA Kazuyuki (*15)
SUEOKA Michiharu
TERAKADO Tetsutaro
YAMAMOTO Masahiro

Tokamak Device Group

MIYA Naoyuki (Leader)
ARAI Takashi
HIRATSUKA Hajime
ISAKA Masayoshi
MASAKI Kei
NISHIYAMA Tomokazu
SUZUKI Yutaka (*12)
YAGISAWA Hiroshi (*2)
HAGA Saburo (*14)
HONDA Masao
KAMINAGA Atsushi
MATSUZAWA Yukihiro (*14)
SASAJIMA Tadayuki
Takahashi Ryuichi (*2)
YAGYU Jun-ichi
HAYASHI Takao
ICHIGE Hisashi
KIZU Kaname
MIYOSHI Yasuhiko
SHIBAMA Yusuke
UEHARA Toshiaki (*15)

RF Heating Group

FUJII Tsuneyuki (Leader)
HIRANAI Shinichi
ISHII Kazuhiro (*15)
SATO Fumiaki (*14)
SHIMONO Mitsugu
TAKAHASHI Masami (*21)
YOKOKURA Kenji
HASEGAWA Koichi
KIKUCHI Kazuo
SAWAHATA Masayuki
SHINOZAKI Shinichi
TANI Takashi
IGARASHI Koichi (*14)
MORIYAMA Shinichi
SEKI Masami
SUZUKI Sadaaki

NBI Heating Group

IKEDA Yoshitaka (Leader)
AKINO Noboru
HONDA Atsushi
KIKUCHI Katsumi (*15)
NOTO Katsuya (*14)
OSHIMA Katsumi (*14)
UMEDA Naotaka
EBISAWA Noboru
KAWAI Mikito
KOMATA Masao
OHGA Tokumichi
TAKENOUCHI Tadashi (*24)
USUI Katsutomi
GRISHAM Larry (*18)
KAZAWA Minoru
MOGAKI Kazuhiko
OKANO Fuminori
TANAI Yutaka (*15)
YAMAZAKI Haruyuki (*2)
Division of Fusion Energy Technology

TAKATSU Hideyuki (Unit Manager)
SHIHO Makoto (Senior Principal Researcher)

Group of Fusion Advanced Technology for Practical Use

ABE Tetsuya (Leader)

Blanket Technology Group

AKIBA Masato (Leader)
ENOEDA Mikio EZATO Koichiro HIROSE Takanori
HOMMA Takashi NISHI Hiroshi NOMOTO Yasunobu (*8)
SUZUKI Satoshi TANIGAWA Hisashi TANZAWA Sadamitsu
YOKOYAMA Kenji

Superconducting Magnet Technology Group

OKUNO Kiyoshi (Leader)
ABE Kanako (*4) HAMADA Kazuya ISONO Takaaki
KAWANO Katsumi KOIZUMI Norikiyo NABARA Yoshihiro
NAKAJIMA Hideo NUNOYA Yoshihiko OSHIKIRI Masayuki (*15)
SUGIMOTO Makoto TAKANO Katsutoshi (*15) TSUTSUMI Fumiaki (*26)

Plasma Heating Group

SAKAMOTO Keishi (Leader)
DAIRAKU Masayuki HANADA Masaya IKEDA Yukiharu
INOUE Takashi KASHIWAGI Mieko KASUGAI Atsushi
KOBAYASHI Noriyuki (*25) KOMORI Shinji (*15) MINAMI Ryutaroh (*17)
ODA Yasuhisa (*27) SEKI Takayoshi (*2) TAKAHASHI Koji
TANIGUCHI Masaki TOBARI Naoyuki (*17) WATANABE Kazuhiro

Tritium Technology Group

YAMANISHI Toshihiro (Leader)
HAYASHI Takumi ISOBE Kanetsugu KAWAMURA Yoshinori
KOBAYASHI Kazuhiro MIURA Hidenori (*8) NAKAMURA Hirofumi
SHU Wataru SUZUKI Takumi UZAWA Masayuki (*12)
YAMADA Masayuki

Fusion Materials Development Group

SUGIMOTO Masayoshi (Leader)
ANDO Masami CHIDA Teruo (*3) IDA Mizuho (*4)
MATSUHIRO Kenji (*17) NAKAMURA Hiroo NAKAMURA Kazuyuki
TANIGAWA Hiroyasu UMETSU Tomotake (*10) YUTANI Toshiaki (*25)
Fusion Neutronics Group

- NISHITANI Takeo (Leader)
- ABE Yuichi
- KUBOTA Naoyoshi (*17)
- OCHIAI Kentaro
- TANAKA Shigeru
- KAWABE Masaru (*15)
- KUTSUAKAKE Chuzo
- OKADA Kouichi (*23)
- YAMAUCHI Michinori (*25)
- KONDO Keitaro (*16)
- NAKAO Makoto (*8)
- SATO Satoshi

Blanket Irradiation and Analysis Group

- HAYASHI Kimio (Leader)
- HOSHINO Tsuyoshi (*17)
- TSUCHIYA Kunihiko
- ISHIDA Takuya (*15)
- YAMADA Hirokazu (*8)
- NAKAMICHI Masaru

Division of ITER Project

- TSUNEMATSU Toshiihide (Unit Manager)
- YOSHINO Ryuji (Supreme Researcher)
- TADA Eisuke (Senior Principal Researcher)
- SUGIHARA Masayoshi (Senior Principal Researcher)
- KOIZUMI Koichi
- ODAJIMA Kazuo

ITER Project Management Group

- MORI Masahiro (Leader)
- ITAMI Kiyoshi
- SHOJI Teruaki
- SENGOKU Seio
- SUGIE Tatsuo
- SHIMIZU Katsuhiro
- YOSHIDA Hidetoshi

ITER International Coordination Group

- ANDO Toshiro (Leader)
- HONDA Tsutomu (*25)
- KATAOKA Yoshiyuki (*2)
- NAGAHAMA Tetsushi (*20)
- SAKASAI Akira
- TAKAHASHI Yoshikazu
- IIDA Hiromasa
- MARUYAMA So
- OIKAWA Toshihiro
- SATO Kouichi (*26)
- TERASAWA Atsumi (*11)
- YOKOYAMA Yosuke
- MORI Takeshi
- MORIMOTO Masaaki (*12)
- OKADA Hidetoshi (*2)
- SHIMADA Michiya
- YOSHIDA Kiyoshi

ITER Plant System Group

- NEYATANI Yuzuru (Leader)
- OHMORI Junji (*25)
- TAKAHASHI Hideo (*22)
- YAMAMOTO Shin
- SATO Kazuyoshi
- TAMURA Kousaku (*9)
- SEKIYA Shigeki (*10)
- YAGENJI Akira (*1)

ITER Tokamak Device Group

- SHIBANUMA Kiyoshi (Leader)
- KAKUDATE Satoshi
- NAKAHIRA Masataka
- KITAMURA Kazunori (*25)
- OBARA Kenjiro
- MOHRI Kensuke (*7)
- TAKEDA Nobukazu
ITER Safety Design Groupe

O’HIRA Shigeru (Leader)
HIGUCHI Masahisa TAKEI Nahoko TAKEMURA Morio (*7)
TSURU Daigo

Collaborating Laboratories

Tokai Research and Development Center
Nuclear Science and Engineering Directorate
Irradiation Field Materials Research Group

JITSUKAWA Shiro (Leader)
FUJI Kimio OKUBO Nariaki TANIFUJI Takaaki
WAKAI Eiichi YAMAKI Daiju

Research Group for Corrosion Damage Mechanism
MIWA Yukio

Quantum Beam Science Directorate
Nanomaterials Synthesis Group
TAGUCHI Tomitsugu

Accelerator Group
HIROKI Seiiji

Industrial Collaboration Promotion Department
Administration Section
NEMOTO Masahiro

Oarai Research and Development Center
Advanced Nuclear System Research and Development Directorate
Innovative Technology Group,
ARA Kuniaki

Technology Development Department
Advanced Liquid Metal Technology Experiment Section
YOSHIDA Eiichi
*1 Hazama Corporation
*2 Hitachi, Ltd.
*3 Hitachi Engineering & Services Co., Ltd.
*4 Ishikawajima-Harima Heavy Industries Co., Ltd.
*5 JP HYTEC Co., Ltd.

*6 Japan EXpert Clone Corp.
*7 Kawasaki Heavy Industries, Ltd.
*8 Kawasaki Plant Systems, Ltd.
*9 Konoike Construction Co., Ltd.
*10 Kumagai Gumi Co., Ltd.

*11 Mitsubishi Electric Corporation
*12 Mitsubishi Heavy Industries, Ltd.
*13 NEC Corporation
*14 Nippon Advanced Technology Co., Ltd.
*15 Nuclear Engineering Co., Ltd.

*16 Osaka University
*17 Post-Doctoral Fellow
*18 Princeton Plasma Physics Laboratory (USA)
*19 Research Organization for Information Science & Technology
*20 Shimizu Corporation

*21 Sumitomo Heavy Industries, Ltd.
*22 Taisei Corporation
*23 Tohoku University
*24 Tomoe Shokai Co., Ltd.
*25 Toshiba Corporation

*26 Total Support Systems
*27 University of Tokyo